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INTRODUCTION

How this book arose

The inspiration behind this book was two-fold. First, Tirthaji’s reconstruction of vedic
mathematics, of which a brief historical account follows later in the Introduction. Being an
oral tradition, little or no ancient material is extant, and the one surviving book by Tirthaji

contains only a handful of examples in geometry.

Secondly, I wondered if the elementary properties of a circle can be demonstrated simply, in
such way that we can see why they hold good. Having satisfied myself that they can, the next
issue was, to investigate what prior steps, such as definitions and axioms, would serve to

establish these demonstrations as part of a system of geometry suitable for an oral tradition.

An oral tradition in geometry

The reader might like to consider, what might such a system be like?

As for me, an image comes to mind of an exposition being given in a sheltered nook on a
beach, figures being sketched in the sand, and the rest of the exposition being spoken. Proofs
would generally need to be brief and to the point. Qualities such as effortlessness, simplicity,
brevity and clarity would be highly prized. The aim of this book is to provide a text suitable

for such an exposition.

Two other aspects of an oral tradition are worthy of mention. First, the use of verse as an aide
memoire. It is much easier to memorize material in rhyming verses — but this idea has not
been used here. Secondly, there is the use of sutras, as in the vedic tradition, a sutra being a
terse statement of some important point or principle (literally, a sutra is a thread). The material
of this book was developed without reference to Tirthaji’s sutras, but their application to this

system is investigated in Appendix 1.

Anyone who has read through the first three of the thirteen books of Euclid’s “Elements’ will
have encountered the theorems on circles given here. That the present material covers the
ground more swiftly is partly because less ground is covered, partly because these methods

are generally much simpler and briefer.
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B.K. Tirthaji’s reconstruction of vedic mathematics

Ancient India’s oral vedic tradition began to be written down about 1600 or 1700 B.C.,
according to western scholars. Over a period of about 1000 years the four vedas were written

down: the Rig-veda, the Yajur-veda, the Sama-veda, and the Atharva-veda.

Tradition had it that the vedas were the embodiment of all knowledge. Yet when nineteenth
century scholars examined the vedas there were some puzzles. Consider the Atharva-veda, for
example, which deals with architecture, engineering, mathematics, and other topics. The
material supposed to be on mathematics comes under the heading of ‘Ganita sutras’, i.e.
mathematics sutras. Under this heading came statements such as, “In the reign of King
Kamsa, arson, famine and insanitary conditions prevailed”. The scholars could make nothing

of it: there appeared to be no connection with mathematics.

However, a brilliant south Indian scholar, later known as Shri Bharati Krishna Tirthaji, was
convinced that there was something in the ancient tradition. By persistence he obtained a clue
(he tells us), and after that things began falling into place. In due course he concluded that the
whole of mathematics, pure and applied, in all its branches, comes under sixteen sutras. He

wrote sixteen volumes on the subject, which subsequently were all lost.

Tirthaji was born in 1884. His key work on vedic mathematics appears to have been done
between the years 1911 and 1918. In 1921 he was made Shankaracharya of Puri (Hindu India
being led by four Shankaracharyas, a bit like having four popes). Shortly before this he
became a renunciate, i.e. he renounced his former life. This, and his considerable religious
duties as Shankaracharya, are no doubt the reasons why he did not turn his attention to vedic
mathematics again until the 1950s, only to realise that the sixteen volumes were lost. He
decided to rewrite them all, and as a preliminary step wrote another book, Vedic Mathematics,
to introduce the whole series. Owing to ill-health he got no further, and died in 1960. His

introductory book, the only one by him surviving on the subject, was published in 1965.
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A further issue

At the outset mathematics divides into two branches, based on number and form: arithmetic
(from which stems algebra) and geometry. Tirthaji’s introductory book deals mainly with
arithmetic and algebra: geometry is scarcely addressed. Furthermore, the handful of examples
he gives on geometry are unlike anything here. This material is something new. The present
study does not simply arise out of his book. Yet it does use a mental approach. Can it be
considered to belong to Tirthaji’s system? If it does it complements his introductory material

on vedic mathematics.

Geometry and the nature of an oral tradition

Imagine a society with an oral tradition, and willing to allow its understanding of subjects
such as geometry to develop; willing to incorporate fresh insights into the tradition. It would
be in their interests to do so, and it would happen quite naturally through teachers mastering
the current understanding, and in some cases developing it. Such a society would probably
have a fairly pragmatic outlook, having respect for the tradition but not regarding its current
version as a perfect system, necessarily faultless, but rather as reflecting the current
understanding, and as such subject to amendment, be it correction or further refinement.
Perhaps this is in the nature of an oral tradition in geometry. Certainly the writing of the
present book has been a bit like that, fresh insights constantly changing the material and the
format, and it would be no surprise if it could usefully benefit from further insights and

amendments, etc.

A word about the Preliminaries

An earlier draft of this book began in much the same way as Euclid’s Elements. Subsequently
it became clear that an earlier starting point was needed. The normal thing is to begin at the
beginning, and then go on to the end. (Of course this is mathematics, so perhaps all normality
is suspended!) But what kind of activity is it that begins at the beginning and then goes
backwards? Somewhere Bertrand Russell says that it is the philosophy of mathematics,

adding that once established it becomes mathematics.

The Preliminaries outline the new starting point, and the reasons for it.
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PRELIMINARIES

“ "Tis evident that all the sciences have a relation, greater or less, to human nature; and that however wide any
of them may seem to run from it, they still return back by one passage or another. Even Mathematics, Natural
Philosophy, and Natural Religion, are in some measure dependent on the science of Man; since they lie under
the cognizance of men, and are judged of by their powers and faculties.”

David Hume, A Treatise of Human Nature.

The relevant ‘faculties and powers’ of man

Geometry is a branch of mathematics, which is a branch of human knowledge. Need there be
any surprize, then, if it found useful to begin by stating the relevant faculties and abilities that
we have? They are as follows:

1. LANGUAGE Since the concern here is with an oral tradition, the use of language is of

paramount importance. Implicit in this are speech, listening and understanding what is said.

2. VISUAL MESSAGES (a) An oral tradition may be characterized by the lack of writing,
but it would doubtless have a strong visual element: e.g. keen observation of something being
shown or done, and an interest in such things as paintings and drawings and diagrams.

(b) Use of instruments is another relevant characteristic — especially their skilled use.
Effectively, many instruments are an extension of the human body: they widen the range of
what we can do. This study uses drawing instruments and materials, including a straight edge
and compasses. On being used according to precise instructions, they ensure that figures are

drawn accurately.

3. REASON Geometry is especially valuable as an exercise in the use of reason. For the
present study it suffices to note that we have the ability to recognize sound reasoning.
One way or another, then, the following are available at the outset of the study:
1. A language (in use).
2. Drawing instruments and material. More specifically: a plane (usually
represented by a sheet of paper), a pen, a straight edge and a pair of
compasses. (The ability to use them is implied, for otherwise they are not
truly available.)

3. The ability to recognize valid reasoning.



PRELIMINARIES

These three are called provisions, being things provided. They are what a suitably equipped
human being brings to the study. What does the subject of geometry itself contribute?

A FURTHER PROVISION
To the above list is added an assumption (a postulate), that magnitudes are unchanged by
motion. The magnitudes of geometry are such things as length, angle, area and volume. It is
the movement of each magnitude as a whole which is being referred to here. Since the present
study of geometry is a study of magnitudes in figures, it is not surprising that something needs

to be given initially concerning magnitudes, to start the ball rolling.

THE ROLES OF THE FOUR PROVISIONS
The study starts then with these four Provisions. But are they really essential? Why choose
this starting point? A book on a craft commonly begins by discussing the tools and materials
needed, and it is clearly appropriate that it should do so. In geometry this translates into
starting with the relevant instruments and material, which is where the first three Provisions

come in:

(1) Language is an instrument for the communication of thought.
(i) Drawing instruments and materials are used to produce figures.
(iii) The ability to recognize valid reasoning is an instrument for evaluating the reasoning

presented to us.

Each of the Provisions has a role, including the Postulate, as is shown in the following

diagram.
(D Prov. 2 (for drawing figures) @ Prov. 1 Language
guag
(® Discussion of figures @ Prov. 3 Reason
(® Reasoning about figures (© Prov. 4 Postulate

\ (concerning magnitudes)

@ A study of magnitudes in figures




PRELIMINARIES

Explanation of the diagram

Box 1: Granted Provision 2 (Box 1) we can draw figures.
3: And granted also a language, we can discuss them.
5: Granted, additionally, the ability to recognize valid reasoning, we can reason about
figures.
7. Finally, by bringing in the fourth Provision it becomes possible to study the
magnitudes in figures.
These descriptions refer to the functions of the Provisions, rather than a sequence in time.

Having explained why provisions are needed, a few words about language follow.

Without the provision of a language there would be no oral tradition, no tool with which to
carry out (or at least to communicate) the study. Yet in the case of geometry this language also
provides material to work on. It contains words which imply a prior acquaintance with
geometry. A word such as ‘circle’ brings a concept to mind. Thus in beginning the study of
geometry there is already a considerable pool of knowledge to draw on, contained within the

language™®. This can be accessed through definitions.

Here we have a key device of language. A definition names something and in some way,
characterizes it uniquely. A handy way of doing this, in mathematics, is to state a single
property which is so distinctive as to suffice of itself — known as a defining property. This can

then be drawn upon in proofs.

A principle used here is that dictionary definitions apply until replaced. This provides a
Justification for the procedure of examining a definition proposed in the text, to see if it is

satisfactory. A definition proposed for a totally unknown term cannot be tested in the same way.

One of the functions of definitions is to remind the student, or else introduce the concept, but

which words need to be placed on the list of definitions?

* This has implications. As an example consider the terms: surface, plane surface, straight line and sphere. Knowing them
enables us to state such things as that the surface of a sphere does not contain any straight lines, whereas a plane surface
does.



PRELIMINARIES

The criterion used is that words in common use need not be defined*, but other words
necessary to the study do need to be. That is to say, words in common use form a core of
material available at the outset, and we are unlikely to choose to redefine any of them unless
there is some specific advantage in doing so.
This criterion is selected as being a common-sense one, natural to an oral tradition.

kosk ok ok sk sk ook sk odk sk ok ok ok o3k
Note that alongside the text there occur explanations and comments under the general heading
‘Remark(s)’. Not being referred to in proofs these may range freely forwards in the text as
well as backwards. They are intended to aid understanding of the text. There is also a
Commentary at the end of the book, which deals with a number of other points arising, but not
needed to follow to follow the text. Its primary purpose is to deal with some objections that
can be raised against this approach, the aim being to show that the system has a sound basis,

with a coherent underlying viewpoint.

The Provisions now follow. They, along with the Definitions, provide a base upon which the

Propositions rest.

* Perhaps we should say redefined, for dictionary definitions are already available.



THE TEXT

PROVISIONS

One way or another, the following are provided:

(1) A language.

(2) A plane, a pen, a straight edge and a pair of compasses.
(3) The ability to recognize valid reasoning.

(4) Postulate: Magnitudes are unchanged by motion

Note that Provision 2 is not considered to be effective until after the Definitions. This is

so that the definitions of a plane and a pen etc. are given before they are granted.

Remarks concerning the Postulate
(1) There have been objections to the use of movement in geometry both in ancient times and
more recently. These and other points are discussed and answered in the Commentary. The

present system firmly and formally incorporates movement through this postulate.

(2) The Postulate implies that:
(a) lengths may be directly transferred anywhere in the plane (compasses at
a fixed radius being one means of doing s0);
(b) an angle can be rotated about its vertex (or fulcrum) without change;
(c) an angle can be translated in space without change (translation =
movement without rotation);
(d) whether an angle is measured by rotation (of a radius), or by taking the difference

between the two bounding directions, the result is the same.

Implications concerning area and other magnitudes need not concern us at present.

(3) The Postulate is relevant to some of the definitions (e.g. line and angle).



DEFINITIONS
THE GEOMETER’S DEVICES
Definition 1 An axiom is an assertion which is granted, being self-evident.
Definition 2 A postulate is an assertion which is granted, being an assumption.

Definition 3 A provision is something provided.

Remark Provisions include assertions, such as axioms and postulates, but are wider in scope.
Definition 4 A theorem is an assertion which is to be proved.

Definition 5 A corollary is a theorem which immediately follows from the theorem preceding
it.
Remark A Corollary may be presented informally, without restatement of the details of its

parent theorem, such as the figure.

Definition 6 A problem, or problem of construction, states a construction which is required,

needing to be given and proved.

MAGNITUDE

Definition 7 Magnitude is that of which a part is indistinguishable from the whole save in
size and position.
Remark Examples include lengths and angles. Magnitude is a key concept, because this study

of geometry is a study of magnitudes in figures.

Definition 8 The whole of a magnitude is said to be greater than a part, and the latter to be

less than the whole.

Definition 9 Magnitudes which are indistinguishable from one another except by position are

said to be equal to one another.



DEFINITIONS

POINTS

Definition 10 A point has position but no parts.

LINES

Definition 11 The path traced out by a point on a moving body is called a line.

Remarks

(1) The tip of a pen simulates a point; hence this definition, in accordance

with what a pen traces out.

(2) It would be briefer to speak of a ‘moving point’ rather than a ‘point on

a moving body’. But as Bertrand Russell points out, the objection to this is that a
point, being a position, cannot move. However, bodies can move, and there are

points on them.

Definition 12 If two lines cross one another at a single point they are said to intersect at that

point.

Remarks

(1) Two intersecting lines are useful for specifying a point.

(2) It remains to be established that ‘intersection’ is possible, i.e., that two
lines can cross one another at a single point. The result is intuitively
obvious, and the proof reflects this.

[See A7 Corollary (2)].

Definition 13 That line which is uniquely specified given two points on it is said to be

straight.

Remarks

(1) Since a specific two points are not referred to it is implied that any
two points on the straight line suffice.
(2) Defined in this way, a straight line is unlimited in either direction.

(3) Those two points can be used to name that straight line.

Definition 14 A straight line which is terminated at a point is said to stand on that point or, to

be drawn to or from it.

Definition 15 That part of a straight line which suffices to connect two points on it is said to

lie berween those two points and is called a length or segment.

Remarks (1) And those two points are used to name that segment.
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(2) Although either term may be used, if we wish to draw attention to the
size of the segment then the term length is more suitable (I suggest).*
(3) The term distance is used as an alternative to length, especially if the

segment is not actually drawn. An example is the radius of a circle.

Definition 16 Direcrion is specified by a straight line or segment drawn to or from a point.
Remark It is understood that ‘holding constant direction’ is the same thing as ‘in a straight

line’.

Definition 17 The direction from a point is said to be opposite to the direction to a point.
Notation For convenience, when considering the directions specified by a length or straight
line AB, let us use AB to denote the direction from A to B and BA to denote the opposite

direction.

Remark When dealing with lengths, direction is irrelevant. Thus lengths AB and BA are

equal. Otherwise put, there are two ways of naming the same length.

TURNS
Definition 18 A rurn is a change in direction.

Definition 19 If a length, initially coinciding with a straight line, turns just sufficiently about

one of its ends to lie on the adjoining part of the straight line, it is said to make a half turn.

Definition 20 That turn is called a complete which suffices to return to the original direction,
having passed through the opposite direction and another pair of opposite directions through
the fulcrum.

Remark The second pair of opposite directions is included to ensure that the initial half turn is

not then repeated in reverse.

* This allows ambiguity, but only such as is to be found in a dictionary definition. Usunally the context makes the meaning
clear, as is normal in speech. If there were contexts where the ambiguity mattered, then of course steps would need to be
taken to avoid it.



DEFINITIONS
SURFACES

Remark The definition of a surface comes next. The purpose of this particular definition is not
to tell us what a surface is — those who want that would do better to look in a dictionary.
Definition 21 incorporates two properties that a surface needs to have. Since we are being
granted a plane surface, by including those two properties in the definition they are
automatically granted, so saving us the trouble of proving them.

A more detailed account of this is given in the Commentary, but none of it is needed in order
to understand the mathematics that follows. For that, a dictionary definition will do.

Definition 21 A surface is that which suffices to contain a complete turn at each of its points,
and a multitude of lines linking any two of them.

Definition 22 That surface which is uniquely specified given any three non-collinear points

on it is said to be a plane.

Remarks (1) This definition is an extension of the definition of a straight line — a point
used to advantage in Proposition A9, a theorem which might otherwise appear as
an axiom.

(2) Note that the definition appeals to experience. It is a formulation of
something already known. Of course, the same remark applies to many another
definition.

ANGLES
Definition 23 An angle is a measure of change in direction at a point.

Definition 24 A pair of straight lines or segments standing on a common point are said to
bound the angle so formed.
Remarks (1) A half turn and a complete turn are examples of angles, the latter
being bounded by coincident segments or straight lines.
(2) If an angle includes one or more complete turns, the number of such
turns needs to be noted. Just noting the bounds of an angle is insufficient
otherwise. However, this issue does not arise in the present book.

Definition 25 And that common point is called the centre, or vertex, or fulcrum of the angle.



DEFINITIONS

Definition 26 If a straight line standing on another straight line makes equal angles with it on
either side then that first line is said to be perpendicular to the other, and those equal angles

are said to be right angles.

Definition 27 If two angles share a common centre, and lie on either side of a common

boundary, the angle contained within their outer boundaries is called their sum or addition.

FIGURES

Definition 28 A drawing in a plane is called a figure.
Remarks (1) Otherwise put, a figure consists of lines and/or points in a plane.

(2) A part of a figure is itself a figure, being a drawing in a plane.

Definition 29 A construction of a figure, or construction, consists of the steps required to draw

that figure.

Definition 30 Figures which are indistinguishable from one another except by position are

said to be congruent to one another.

Definition 31 If two straight lines in a plane do not meet they are said to be parallel.

Definition 32 If a pair of straight lines are separately intersected by a third straight line, the
latter 1s said to be a transversal to the other two.

Remark Note that the pair of straight lines intersected by a transversal may or may not be
parallel. This accords with the original use of the word ‘transversal’. [See The Shorter Oxford

Dictionary.]

Definition 33 Two similar parts of the same figure or of two different figures are said to
correspond to one another.

Remark For example if two triangles are similar (Definition 45), the equal angles can be said
to correspond to one another. Again, the angles similarly made by a transversal with two
straight lines are said to be corresponding angles. And in similar triangles, the pair of sides

sandwiched between the same pair of angles are said to be corresponding sides.

10



DEFINITIONS
THE CIRCLE
Definition 34 A circle consists of a line at constant distance from a point, and without end
points.
Remark The word distance is used as an alternative to length here. Constant distance
specifically refers to a measure.
Definition 35 And the line so drawn is called the circumference of the circle.

Definition 36 A part of the circumference is called an arc, or arc of the circle.

Definition 37 The given point is called the centre and the fixed distance from the centre is
called the radius of the circle.

Definition 38 A segment lying between two points on the circumference of a circle is called a
chord of the circle.

Definition 39 A chord passing through the centre of a circle is called a diameter of that

circle.

Definition 40 A semicircle consists of a diameter of a circle and that part of the circle which

lies on one side of it.

Definition 41 A straight line which shares just one point with a circle is said to be a tangent
to that circle.

Definition 42 Joining the ends of an arc of a circle to a point on the opposite arc, the arc is
said to subrend an angle at that point, or to subtend an angle on the circumference.

A

B

N

Fig 1 Showing an arc ABC subtending an angle at P




DEFINITIONS

A chord can also be said to subtend an angle at the circumference, although there may be a

need to specify which of the two opposite arcs the angle is subtended onto.

Definition 43 If two chords of a circle intersect inside it they are said to intersect internally.
Definition 44 And if the two chords do not intersect until extended outside the circle they are
said to intersect externally.

Remark Internal and external intersection are illustrated below. In both cases chord AC 1s

said to have parts AB and BC. These, it emerges, are sides of similar triangles.
(See e.g. Propositions D7 and D9).

A C

C

Fig 2a Internal intersection Fig 2b External intersection

Definition 45 A one-line drawing is one which can be drawn without removing pen from

paper.
Definition 46 A closed figure is that part of a one-line drawing which suffices to meet itself.
Remarks (1) Of course, if the one-line drawing does not meet itself the figure is not
closed.
(2) A circle is an example of a closed figure.
POLYGONS
Definition 47 A closed figure formed from joining segments end-to-end is called a polygon.

Definition 48 And those segments are called its sides.

Definition 49 Where two sides meet is called a vertex of the polygon.

12



DEFINITIONS

Definition 50 An angle within a polygon and between two adjacent sides is called an angle

of the polygon.

Definition 51 The angle between one side extended and the adjacent side is called an exterior
or external angle of the polygon.
Remarks (1) It is customary to use the term ‘external angle’ in this way.

(2) Note that there are two external angles at a vertex (Figure 3); being

vertically opposite they are equal to one another, as will be shown.

external
angles

Fig 3
Definition 52 A triangle is a polygon with three sides.
Notation A triangle formed from joining three points, A, B and C, is called ‘triangle ABC’,
and is denoted by AABC.

Definition 53 An isosceles triangle is one with two sides equal in length.

Definition 54 If two angles of one triangle are the same as two angles of another those two

triangles are said to be similar.

Convention If two triangles are stated to be either similar or congruent to one another it is

understood that, if the vertices are named, they are named in the same sequence.

Definition 55 A quadrilateral is a polygon with four sides.

Definition 56 A rectangle is a quadrilateral with all angles equal.

13



DEFINITIONS

Definition 57 A square is a rectangle with two adjoining sides equal in length.

Definition 58 A cyclic-quadrilateral is a quadrilateral with all four vertices lying on the
circumference of a circle.
Remark Strictly speaking it is a theorem that a four-sided figure has four vertices, but it is

assumed here.

Definition 59 A parallelogram is a quadrilateral with opposite sides parallel.

DRAWING INSTRUMENTS

Definition 60 A pen is an instrument for drawing a line.

Definition 61 A straight edge is an instrument for guiding a pen along any chosen part of the
straight line specified by two points.

Remark A straight edge can be used to extend a segment.

Definition 62 A pair of compasses is an instrument for guiding a pen around the
circumference of a circle, given the centre and the radius.
Remarks (1) This last instrument is called a ‘pair’ because it has two linked arms,

the tip of one acting as a ‘fixed point’ and the tip of the other as a point on a

moving body.

(2) Euclid does not permit the use of compasses to draw a circle of any
given radius about any centre. The issue is discussed briefly in the
remarks following Provision 4, these being followed up in Part IV of the
Commentary.

Remark A further definition is given at the beginning of Part A and another at the beginning

of Part C, placed there for the convenience of the reader. But generally it is more convenient

to have all the definitions in one place.

14



DEFINITIONS

SOME POINTS CONCERNING THE TWO TYPES OF PROPOSITION

This study of geometry is concerned with:
(1) constructing figures (problems), and

(2) making assertions about figures, especially the magnitudes they contain (theorems).

These are the two types of proposition. They are interwoven in a single sequence, and need to
work from a base of some given material — the Provisions. Of these:

(1) Provision 2 starts the constructions off, initially conceding circles (using compasses), and
lengths (using a straight edge), and points (being granted a plane).

(ii) Provision 4 is an initial granted assertion.

(111) In due course it becomes clear that this is not all, for Provision 1 provides additional

material in the form of words. [see Commentary, Part IT ()]
One might ask, which are the more important, theorems or problems? The object of the

present book is to demonstrate the elementary properties of circles, and so the text leads up to

and concludes with the relevant theorems. The problems are subservient to this end.

15



PROPOSITIONS
PART A
CONGRUENCE, MAGNITUDES AND LINES
CONGRUENCE

Definition 63 A specific construction is one which produces only one figure.
Remark The following theorem applies to figures which can be drawn with a straight edge

and compasses.

Proposition Al Theorem Figures which are or can be constructed identically are

congruent.

Proof : Two figures can use the same lengths, angles and other magnitudes. [Postulate]
Therefore a given construction can be used in two different places.

But if it is specific, a given construction produces only one figure. [Definition 63]
Therefore two figures so constructed are in fact the same.

This establishes the theorem.

MAGNITUDES

Proposition A2 Theorem Magnitudes which are or can be constructed identically are

equal.
For that part of a figure needed to specify a magnitude is itself a figure. [Definition 28]

And if two such parts are or can be constructed identically they are congruent to one another.
[A1 Theorem]|
Therefore the magnitudes they specify are indistinguishable; i.e. they are equal to one another.
[Definition 9]
This establishes the Theorem.

16



PROPOSITIONS

Proposition A3 Theorem Magnitudes which cannot be constructed identically are not
equal.

For if two magnitudes cannot be constructed identically they are not indistinguishable, one

from the other. Therefore they are not equal.

Remark Two abbreviated forms of reference may be used. For example, Proposition A9

Theorem may be referred to as Proposition A9 or A9 Theorem.

Proposition A4 Theorem Magnitudes which are equal to the same magnitude are equal to
one another.

For (applying Definition 9) if two magnitudes are each indistinguishable from a third

magnitude they are indistinguishable from one another.

Notation Denote the addition, or taking of magnitudes together by the + sign, and the

converse, i.e. subtraction, by the — sign.
Proposition A5 Theorem If equals are added to equals the totals are equal.

Proof: Let a,, a,, b, and b, be magnitudes such that ay=1d,

&b, =h,
Then a, is indistinguishable from a, and b, from b, [Definition 9]
Hence a, + b, is indistinguishable from a, + b,

1e. a; + b; = a,+ b,, demonstrating the Theorem.
Proposition A6 Theorem 1f equals are subtracted from equals the resultants are equal.
For let a;, a,, b, and b, be magnitudes such that a,+b =a,+b,

&b, =D,

Then if a; = a, the previous theorem holds good, but if a, # a, it does not.

i.e. a; = a,, demonstrating the Theorem.

17



PROPOSITIONS

Proposition A7 Theorem A point has no magnitude, for a point has no parts. [Definition 10]

And whatever lacks parts lacks the defining characteristic of a magnitude. [ Definition 7]

That is, a point has no magnitude.

LINES
Proposition A8 Theorem A line is one point thick throughout.
This follows from a line being the path of a point on a moving body. [Deﬁhitionl 1]

A8 Corollary If two lines cross one another, and do not share a common stretch of line, they

cross at a single point.

Proposition A9 Theorem A line can be used to join two points.
For any two points on a line are joined by that line.

A9 Corollary A line has two end-points, unless they coincide.

For we start the line at one point and end at another, uniess they coincide.

Proposition A10 Theorem Two distinct straight lines cannot share more than one point.

For two points suffice to specify a straight line. [Definition 13]

Proposition AII Theorem A length has the property of magnitude.

For a part in no way differs from the whole save in size and position.
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Proposition AI12 Theorem The straight line through any two points in a plane lies in

that plane.

For any two of the points which suffice to specify a plane also specify a straight line. [Definition 13]
Therefore that straight line lies in the plane.
But any three points on it suffice to specify a plane. [Definition 22]

The result follows.

Remark It can be argued that the next three theorems (the third a corollary) are so obvious
that no proof is needed. Indeed the reader may safely ignore the proofs and move on — thereby

treating them as axioms, which they could be.

Remark A circle divides the plane into three regions: points inside the circle, points outside it,
and points on the circumference. This is a matter of description, just as the parts of figures are

a matter of description.

Proposition A13 Theorem If two circles intersect one another they do so twice.

For if two circles intersect, part of one lies inside the other and part lies outside. That is, that
circle has one arc inside the other and one arc outside.

And each arc has two end points. [A9 Corollary)
Since the two arcs meet, being complementary parts of the same circle, they must share the
same end points.

And these end points are neither inside nor outside the circle. That is, they lie on the
circumference.

Therefore if two circles intersect they do so twice.
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Proposition AI4 Theorem A chord of a circle lies inside that circle.

Fig 4

Take a point P on the circle and join it to a point Q inside the circle.
Then segment PQ lies inside the circle (Figure 4).
Extend PQ in the direction PQ. Let the extension be to a point R.
There are three possibilities as to the location of R:

(i) inside the circle (Figure 5 (1))

(i1) outside the circle (Figure 5 (ii))

(iii) on the circumference (Figure 5 (iii)).

R
e P 2

Fig 5(i) Fig 5(ii) Fig 5(iii)
In case (i), segment PR lies inside the circle, but it is not a complete chord.
In case (ii), the end point R of the extension lies outside the circle. Therefore line QR joins a
point inside to a point outside, which means it crosses the circumference — let us say at point
T. In that case PT is a chord of the circle (i.e. it satisfies the definition of a chord), and it lies
wholly inside the circle.

In case (iii), PR is a chord of the circle, and lies inside the circle.

Thus two of these three cases yield a chord, and in both of these the chord lies inside the

circle, demonstrating the Theorem.
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A 14 Corollary 1f a straight line intersects a circle it does so twice.

For if a straight line intersects a circle it must have at least one point inside the circle and one

point on the circumference.

And in that case the considerations of the previous proof apply. Hence the straight line

includes a chord inside the circle, etc., demonstrating the Theorem.

PART B

ANGLES, PARALLELS, TRIANGLES & QUADRILATERALS

ANGLES
Proposition BI Theorem An angle is a magnitude.

For part of an angle in no way differs from the whole save in size and position. [Definition 7]

Proposition B2 Theorem An angle considered clockwise is equal to itself considered

anticlockwise.

For they are constructed identically. [A2 Theorem]
Remark A system is chosen here in which angles and other magnitudes are not

distinguished by direction.

Proposition B3 Theorem If a straight line divides an angle into two adjacent angles, the

latter together make up the original angle.

This follows from Definition 27.
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Proposition B4 Theorem Angles which are not adjacent can be added.

For angles are unchanged on being transferred in space. [Postulate]

And once adjacent, with a common centre, the angles can be added. [Definition 27]

Proposition B5 Problem To drop a perpendicular to a straight line, through a given point
not on that line, and to construct right angles.

First, let us suppose that the given point, P, is not on the given line (Fig 6).

Construction Centre P, place the compasses’ pen on some point A in line £ not too
close to P. Draw a circle, intersecting ¢ again at B. Same radius, centre
A, draw a circle. Same radius, centre B, draw a circle intersecting the
second circle at P’ By construction, these two circles also intersect at
P. Join PP’ , Intersecting line ¢ at M (Fig 7)

PI
4 A B ¢
M
P P
Fig 6 Fig 7

Then PM is perpendicular to line ¢, and angles PMA and PMB are right angles.

Proof The constructions on either side of line PP’ are identical, so that angles AMP and BMP
have been constructed identically.

That is angle AMP = angle BMP. [A2 Theorem]
Therefore they are right angles, and PM is perpendicular to line €. [Definition 26].
This demonstrates the Proposition, if the given point is not on the given line.
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Secondly, if P lies on ¢ the construction differs only in that the second and third circles need
to have a radius r, greater than that of the first circle. Points P and M now coincide, and P'P is
perpendicular to €. The proof is essentially the same.

Proposition B6 Theorem A complete turn equals two half turns.

For in completing a turn [Definition 18] two half turns are made [Definition 19], the first in

going to the opposite direction [Definition 17] and the second in returning from there to the

original direction.

Proposition B7 Theorem All complete turns are equal, and all half turns are equal, and all

right angles are equal.

For changing the location of a magnitude does not change it. [Postulate]

Proposition B8 Theorem A half turn equals two right angles.
For right angles are formed by dividing a half turn into two equal angles. [Definition 26]

B8 Corollary A complete turn equals four right angles.

Proposition B9 Theorem Vertically opposite angles are equal.

D B

Fig 8
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Proof : For let AOB, COD be intersecting straight lines (Fig 8).
Then AO and OB point in the same direction, [Definition 15]
and likewise CO and OD.

Therefore the change in direction from AO to CO is the same as the change in direction from
OB to OD.
That is, angle AOC = angle BOD, [Definition 23]

which establishes the Theorem.

Second Proof : The two ‘vertically opposite’ angles are constructed identically, therefore they
are equal. [A2 Theorem]

Remark This Theorem is often referred to as ‘vertically opposite’.

PARALLELS

Proposition B10 Theorem Two intersecting straight lines make unequal corresponding

angles with a transversal.

Fig 9 Showing PR, the transversal to lines AP and AQ

Proof : In Fig 9 the two straight lines through point A lie in different directions. [Definition 15]
But the transversal PR represents a single pair of directions.

Hence the changes in direction from PA and QA to PR are different.

Therefore angles APR and AQR are constructed differently.

Therefore they are unequal. [A3 Theorem]
This establishes the Proposition.
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Proposition B11 Theorem If corresponding angles are equal, the lines intersected by the

transversal are parallel.

For if the latter intersect, corresponding angles are unequal. [B10 Theorem]
Therefore since corresponding angles are not unequal the pair of lines do not intersect.

That is, they are parallel, demonstrating the Theorem. [Definition 31]

Proposition B12 Theorem If a transversal makes unequal corresponding angles with a

pair of straight lines the latter intersect.

Proof . For B10 Theorem applies to any pair of intersecting straight lines whatsoever, and
between them these encompass all pairs of different directions.

And it applies to any transversal whatsoever.

And angles being bounded or specified by meeting straight lines, [Definition 24]

Proposition B10 applies to all possible pairs of unequal angles.

That is, unequal angles with a transversal only occur if the pair of straight lines intersect.
Being a restatement of the Theorem, this establishes it.
Remark Summarising this proof: inspection shows that all cases of unequal corresponding

angles with a transversal arise from intersecting lines.

Proposition B13 Theorem Parallel lines make equal corresponding angles with a

transversal.

For if corresponding angles are unequal, the pair of lines cut by the transversal intersect.

[B12 Theorem|
Therefore parallel lines cannot make unequal corresponding angles with a transversal.

That is, parallel lines make equal corresponding angles with a transversal.
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Proposition B14 Theorem Parallel lines make equal alternate angles with a transversal.

G D
E
3 C
(o
B
A “
H
F

Fig 10 Illustrating alternate angles a; and a3, EF and GH being parallels

It will be shown that o, = oy (Fig 10).

Proof : o =0, [B13 Theorem]
o, = 0y [BY Theorem)]
Therefore Q= aj, [A4 Theorem]

and this establishes the Theorem.

Proposition B15 Theorem 1f alternate angles with a transversal are equal, the lines are
parallel.

For if alternate angles are equal corresponding angles are equal.

[BY Theorem, ‘vertically opposite’]
And if corresponding angles are equal, the lines are parallel. [B11 Theorem]
That is, if alternate angles are equal the lines are parallel.

Second Proof In Fig 11, the figures above and below line ¢ are constructed identically.
Therefore they are congruent.

Therefore if j and k intersect above line ¢ they also intersect below it.

But they can only intersect once if they do so at all.

Therefore they do not intersect, i.e. they are parallel.

Fig 11
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TRIANGLES

Remark A triangle is specified by three points, since these determine the three sides which
bound it. If we are given the base of the triangle, this specifies two points. The third point can

be located by two intersecting lines, and the arcs of two circles will do the job nicely.

Proposition B16 Problem To construct a triangle with sides equal to those of a given

triangle.

A c B

Fig 12 The given triangle

C!

Fig 13 Showing two intersecting semicircles above line ¢

Given Let a, b and c be the sides of the given triangle ABC, with AB =c, BC=a, CA=b
(Fig 12).

Construction Draw a straight line ¢, and using the compasses, mark a length A'B =conit.
Centre A”, draw a semicircle of radius b above line ¢,

Centre B,, radius a, draw another semicircle above line ¢ intersecting the first semicircle at
C'(Fig 13).

It will be shown that AA"B'C" has the same sides as AABC.
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Proof A’C’: b, since C’ lies on the first semicircle, of radius b.
AlsoB'C = a, since C’ lies on the second semicircle.

AndA'B =c, by construction.

Therefore, A’s A’B’C’ and ABC have the same sides, as required.

Remark If the two semicircles met on the line instead of above it, they would just touch one

another.

B16 Corollary Two triangles constructed with the same three sides are congruent.

For since the two triangles can be constructed identically, they are congruent. [A1l Theorem].

Proposition B17 Theorem The angles in a triangle total a half turn.

&2
A
B
Fig 14
Proof : Consider AABC (Fig 14).
Noting that angles which are not adjacent may be added, [Prop. B4]

let the straight line through AB rotate clockwise:
first about B to coincide with CB, then about C to coincide with CA, then about A to coincide
with BA.

It performs a half turn in the process, changing direction from AB to BA, having passed
successively through all the angles inside the triangle.

Thus the angles of a triangle total a half turn.

Remark Tt can be objected that, strictly speaking, straight lines do not move.
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Proposition BI8 Theorem An exterior angle of a triangle equals the sum of the interior
opposite angles.

&

o A

Fig 15 Showing angle DAC, an exterior angle of triangle ABC
Proof: Let the straight line through DAB rotate clockwise, first about B to coincide with CB,
then about C to coincide with CA. Thus the rotation has passed through, or summed,
the interior angles at B and C. [Prop. B4]
But the change in direction from DA to CA is also measured by a rotation clockwise through
angle DAC.
That is, angle DAC = angle ACB + angle ABC, as required.
Proposition B19 Theorem The base angles of an isosceles triangle are equal.
For the two angles are constructed identically. [A2 Theorem]
Remark Isosceles triangles arise, e.g., when two radii of a circle form two of the sides.
Proposition B2() Theorem An exterior angle at the apex of an isosceles triangle is twice
an interior opposite angle.
For that exterior angle is the sum of the interior opposite angles, [B18 Theorem]

and the latter being equal, [B19 Theorem]
the exterior angle is twice the interior opposite angle.

Fig 16 Showing an isosceles triangle and an external angle at its apex.
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QUADRILATERALS

Proposition B21 Theorem The angles in a quadrilateral total a complete turn.

C
D

A B
Fig 17 Quadrilateral ABCD

Proof: In Fig 17, let a straight line initially coincident with AB be rotated clockwise,
first about B until it coincides with CB,
then about C until it coincides with CD,
then about D until it coincides with AD,
then about A until it coincides with AB.

Thus it has returned to the position and direction in which it started, having made a complete
turn, and having passed through all angles inside the quadrilateral to do so.

That is, the angles in quadrilateral ABCD together make a complete turn.
[Note that the addition of angles which are not adjacent is demonstrated in Prop. B4.]

Proposition B22 Problem To construct a rectangle.

Construction Draw two straight lines at P.
Centre P, draw a circle, intersecting the first straight line at points A, B, C & D
(Fig 18).
Join AB, BC, CD, DA.
Then ABCD is a rectangle.

Fig 18
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Proof All four angles having been constructed identically, they are equal. [A2 Theorem]
Therefore ABCD is a rectangle. [Definition 56]

Remarks (1) It suffices to join AB, BC etc. mentally.
(2) The aim, here, is not to construct a rectangle of particular dimensions;
it is to use a simple construction to demonstrate certain results, the
first two of which now follow.

B22 Corollary (1) A diagonal divides a rectangle into two congruent triangles.
For the two triangles are constructed identically. [Al Theorem]

B22 Corollary (2) Opposite sides of a rectangle are equal.

For they are constructed identically. [ A2 Theorem)]

Proposition B23 Theorem Each angle of a rectangle is a right angle.
S R

P Q
Fig 19 Rectangle PQRS

Proof: The rectangle contains four equal angles. [Definition 56]
And together they make a complete turn. [B21 Theorem]
But a complete turn contains four right angles, [B8 Corollary]
these being four equal angles. [B7 Theorem]

Hence each angle of the rectangle is a right angle.

Proposition B24 Theorem All sides of a square are equal.

For a square is a special case of a rectangle. [Definition 57]
Therefore its opposite sides are equal. [B22, Corollary (2)]
And two of its adjacent sides being equal, [Definition 57]

it follows that all four sides are equal.
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Notation Let a rectangle with sides a and b be referred to as Rectangle (a, b) and a square of

side ¢ as Square (c).

Proposition B25 Problem To construct a parallelogram, and to construct a parallel to a

given line, through a given point.

Construction Draw a triangle, ABC.
Centre B, radius AC, draw an arc.
Centre C, radius AB, draw an arc, intersecting the first arc at A’(Fig 20).
Join BA and CA’

Then BACA is a parallelogram.

L

A

Fig 20 Constructing a parallelogram

Proof Triangles ABC and ACB are congruent. [B16 Corollary]
Therefore angle ACB = angle ABC.
Therefore AC is parallel to BA' [B15 Theorem]

And similarly AB is parallel to CA’, whence BACA is a parallelogram.

The same construction applies for the second part of the Proposition, on letting C be the given

point, and AB the given straight line.

Remark Note the principle used here: two congruent triangles asymmetrically placed on

opposite sides of the same base give rise to a parallelogram.

32



PROPOSITIONS

B25 Corollary (1) A diagonal divides a parallelogram into two congruent triangles.
B25 Corollary (2) Opposite sides of a parallelogram are equal.
Remark How can a problem have corollaries? The latter are consequential theorems, which

follow once the construction is established.

Proposition B26 Theorem A parallelogram with a right angle is a rectangle.

A B E

G C

F
Fig 21 Showing a parallelogram ABCD

Proof: Given that BAD is a right angle,

Angle EBC = a right angle. [B13 Theorem]
Therefore angle ABC = a right angle. [B8 Theorem]
Hence angle FCG = a right angle. [B13 Theorem]
Therefore angle GCB = a right angle. [B8 Theorem]
Hence angle GDA = a right angle. [B13 Theorem]
Therefore angle ADC = a right angle. [B8 Theorem]

That is, all four angles inside the parallelogram are right angles.

Therefore they are equal, [B25 Corollary (2)]
and ABCD is a rectangle. [Definition 58]

This demonstrates the Theorem.
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PART C
CONCERNING AREA EQUALITIES AND SIMILAR TRIANGLES
Definition 64 A closed figure is said to be equal in area to a second figure if the two can be

brought into congruence by modifying one of them, by both adding and subtracting a third

closed figure.
Proposition C1 Theorem Two closed figures are equal in area if congruence is brought
about by both adding and subtracting some closed figure more than once.

This is established by repeated application of Definition 64, if need be both adding and

subtracting more than one figure.

Remark This shows that the shape of an area does not affect its size.

Proposition C2 Theorem Area is a magnitude.

For a given area and a part of it both possess the property referred to in Definition 64. And in

this respect they differ only in size and position, shape being irrelevant.

Proposition C3 Problem On a given base to construct a rectangle equal in area to a given

rectangle.
P Q c T
a I
S = R

Fig 22 The given rectangle I
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P Q c T
a I ]

s T Ix

b R
Vi v
Vv
U \ W
Fig 23 Showing how the rectangle IV is constructed
P T
vi Vi
U W

Fig 24 A simplified version of Figure 23

Given PS =a and SR = b are the sides of the given rectangle, PQRS, and c is the given base
on which a rectangle of equal area is to be constructed, where QT = ¢ and PQT is a straight
line (Fig 22).

Construction Extend PS to meet TR extended at U [Provision 2]
Draw a straight line through T, parallel to PU, and another through U,
parallel to PT, to meet at W. [Proposition B25]
Extend QR to meet UW at V.
Extend SR to meet TW at X [Provision 2].

(see Figure 23)
Then 1V is the required rectangle, equal in area to Rectangle I, with sides ¢ and d (say).

Proof All the parallelograms so constructed are rectangles, since they each have one right

angle. [B26 Theorem]
Also, in Figures 24 and 23: (1) Area VII = Area VIII [B25 Corollary (1)]
(2) Area VI = Area V [B25 Corollary (1)]
(3) Area Il = Area III [B25 Corollary (1)]

Adding (2) and (3) and subtracting from (1), Area I = Area IV, as required.
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Remark The next construction and proof follows this last one almost word for word, ditfering

in that it applies to parallelograms rather than rectangles.

Proposition C4 Problem On a given base to construct a parallelogram equal in area to a

given parallelogram.

PI bl QI c TI

s' R'

Q' T
¥
m'
= X
NI
WI
Fig 26
P T
vi'
vir'
UI WI
Fig 27

Given Figure 25, Figure 26 is constructed from it in the same manner as in Proposition

C3. And using dashed letters this time, the proof likewise follows that of Proposition C3.

Proof (1) Area VII = Area VIIT [B25 Corollary 1]
(2) Area VI = Area V' [B25 Corollary 1]
(3) Area IT' = Area TIT [B25 Corollary 1]

Adding (2) and (3) and subtracting from (1), Area I = Area IV,, as required.
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Proposition C5 Theorem 1If two parallelograms have the same angles and equal areas, the
rectangles on their sides are equal in area.

This follows from Propositions C3 and C4, on puttinga=a’,b=b’,c=c’, d =d’, the first of
these two propositions being a special case of the second.

In more detail, the rectangles on sides a, b and c, d are equal in area by Proposition C3, and

the parallelograms on the same sides are equal in area by Proposition C4.

Proposition C6 Theorem Selecting from two pairs of corresponding sides of similar
triangles, the rectangles on non-corresponding sides are equal in area.

P Q

o
/GI 'I M G‘
g R X' R
U

)
w'
1 ] ! XI
w P c C
% ¥ d

VI Wl bl I

' V
Fig 28a Figure 26 of Prop C4, Fig 28b An extract from
putting X'W=d Fig 26, showing similar

triangles U VR and R X' T’
Proof In Fig 26 of Proposition C4,
angle UVR'= angle R’X’T’,
since both angles are equal to angle Uw'rT by Proposition B13.
And angle RUV = angle TR'X by Proposition B13.
Therefore triangles RUV and T'R'X’ are similar. [Definition 53]

Also, UV =b/, VR =d,

X'T =za,andR'X =¢’ [B25 Corollary (2)]

(See Figure 28).

In the similar triangles of Figure 28, a” and d” are corresponding sides, and so are ¢’ and b’
[Definition 33]
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Now by Proposition C5,
Area of Rectangle (a’, b”) = Area of Rectangle (c’,d").
That is, restricting consideration to two pairs of corresponding sides of the given similar

triangles, the rectangles on non-corresponding sides are equal in area.

PART D
ELEMENTARY PROPERTIES OF A CIRCLE

Proposition D1 Theorem A diameter of a circle subtends a right angle on the

circumference.

Fig 29 Fig 30

Proof The procedure given in Proposition B22 for constructing a rectangle is indicated in Fig

29. By B23 Theorem, all four angles of a rectangle are right angles.

And on omitting parts of Fig 29, there remains a diameter subtending a right angle on the

circumference (Fig 30).
This demonstrates the Theorem.
Proposition D2 Theorem Opposite angles of a cyclic-quadrilateral total a half turn.

First note that in Figures 31 and 32 a cyclic-quadrilateral is divided into four isosceles

triangles, with base angles a, B, vy and 8. ‘O’ is the centre of the circle.
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Fig 31 Case 1, ‘O’ inside Fig 32 Case II, ‘O’ outside
a cyclic-quadrilateral a cyclic-quadrilateral

Proof By B19 Theorem the angles in a quadrilateral total a complete turn.
CASET It can be seen in Figure 31 that angles W +Y and Z+X both come to ot + 8 + 7y + 5.
That is, opposite angle-sums are equal

Therefore each must equal a half turn.

CASE II Opposite angle-sums in Figure 32 total « + B + v - & in each case.
That is, angle ZWX + angle XYZ = o + B + y - 8 = angle WXY + angle YZW

Once again opposite angle-sums are equal to one another, and when added make a complete

turn. Therefore each is a half turn.
This establishes the Theorem in both cases.

Proposition D3 Theorem Equal arcs of a circle subtend equal angles on the

circumference.
A,
l}\ X
. \
Fig 33

D B /

C
Proof InFig33, o +B=1 turn [D2 Theorem]

o, + =1 turn [D2 Theorem]
Therefore o, = a,
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That is, arc DCB subtends a constant angle on the circumference.
By A2 Theorem, wherever arc DCB is constructed on the circle does not change this,

That is, equal arcs subtend equal angles on the circumference.

Proposition D4 Theorem An exterior angle of a cyclic-quadrilateral equals the interior

opposite angle.

Fig 34
Proof o; + B =1 turn [Proposition B3]
And o, + B = I turn [Proposition D2]
2
Therefore oy = oy, [Propositions A4 and A6]

establishing the Theorem.

Proposition D5 Theorem The angle between the tangent and the chord equals the angle
subtended by that chord on the far arc.

Fig 35 Fig 36
In Fig 35 suppose that A is a point on arc DAB somewhere between B and D, with o; = «,
[D4 Theorem]|
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Let positions of A approach and then coincide with point B (Figure 36). When this happens
the straight line EB becomes the tangent at B. [Definition 41]
Since o; = a, throughout, it follows that the angle between the tangent and the chord (DB)
equals the angle subtended by that chord on the far arc.

This completes the proof.

Remark Examples of this ‘limiting case’ type of proof are to be found in Discover Vedic

Mathematics by K. Williams.

Proposition D6 Theorem The angle at the centre of the circle equals twice the angle

subtended at the circumference.
F \
\ -
"’ ]

B
Fig 37 Showing a circle, centre O, diameter DOA

In Fig 37, G is any point on arc FAB.
It will be shown that angle FOB =2 X angle FGB, so demonstrating the Theorem.

Proof A‘s OAF, OBA are isosceles,

Therefore angle FOD = 2 x angle FAD, [B20 Theorem]
and angle DOB = 2 X angle DAB [B20 Theorem)]
By addition, angle FOB =2 X angle FAB

But angle FAB = angle FGB [D3 Theorem]

Therefore angle FOB =2 X angle FGB
This demonstrates the Theorem.
Note that only the one case is needed here because 2« + 2 can take any value between a

complete turn and nothing.
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Proposition D7 Theorem The triangles formed from internally intersecting chords of a
circle are similar.

B
D
A \
Fig 38
C

Proof InFig 38, o =0, [D3 Theorem]

and Yi="Y:2 [B9 Theorem]|
Therefore A‘s CAQ, DBQ are similar. [Definition 54]

Proposition D8 Theorem If two chords of a circle intersect one another internally, the
rectangle on the two parts of the one chord is equal in area to the rectangle on the two parts of
the other chord.

For in Proposition A 7, Fig 1, A‘s CAQ, DBQ having been shown to be similar,

Area of Rectangle (AQ, QD) = Area of Rectangle (BQ, QC), [C6 Theorem]
which demonstrates the Theorem.

Proposition D9 Theorem Where a chord is intersected externally by a tangent, the
rectangle on the two parts of the chord is equal in area to the square on that tangent.

A B e/

Fig 39 The tangent at D meets chord AB externally at C
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Proof In Fig 39, angle CDB = angle DAC [D5 Theorem]
Therefore having C in common, A‘s ADC, DBC are similar.

[Definition 54]
Hence Area of Rectangle (AC, BC) = Area of Square (DC) [C6 Theorem]

This establishes the Theorem.

Proposition D10 Theorem Where two chords of a circle intersect externally, the rectangle

on the two parts of the one chord is equal in areato the rectangle on the two parts of the other
chord.

p— —Q

Fig 40

Proof For C6 Proposition applies equally to chord PQR, tangent SR, and to chord P’Q,R,
tangent SR (Fig 40).

That is, Rectangle (PR, QR) and Square (SR) are equal in area, and so are Rectangle (P’R,
Q'R) and Square (SR).

Therefore Rectangle (PR, QR) and Rectangle (P’R, Q,R) are equal in area.

This establishes the Theorem.
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CONCLUSIONS

What has been achieved in this book?

1. Proofs of elementary properties of a circle have been given which can swiftly be followed
mentally. Such a proof is like a key, given which the theorem follows. For example,
recognizing that a diagonal of a rectangle is a diameter of the circumscribing circle is a key.
The immediate conclusion is that a diameter subtends a right angle on the circumference of

the circle.

2. A system has been set up placing the theorems in context, giving them a foundation. And
this latter essentially consists of the four Provisions and the Definitions, these being used in

accordance with the remarks made in the Preliminaries.

3. Thus in this system, the availability of drawing instruments and material is granted, their
roles being spelled out by definitions. Provision 2, on the one hand, and Provisions 1, 3 and 4
on the other, are like different components in the study of geometry. From the former there
spring figures, and from the latter the means of formulating and demonstrating their

properties.

4. Movement is incorporated into the system via the Postulate. This leads easily to the

necessary theorems on parallels.
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COMMENTARY

INTRODUCTION

This Commentary was written to anticipate queries and to act as a tool for evaluating the
approach of this book. Above all, it seeks to demonstrate that by meeting the needs of an oral
tradition, a coherent approach to the study of geometry can be developed.

Also, there are all sorts of questions and points which can arise in connection with a piece of
mathematics such as this one, and the Commentary gives a place in which to air them. The
following short essay gives a taste of this, as well as sketching the background to some of the

topics covered in the Commentary. It begins with an apparently straightforward question.
Why not use Euclid’s definitions, instead of supplying others?

Euclid’s definitions served the Elements well, and are part and parcel of an impressive
achievement. When written the Elements was a thoroughly modern work, produced under the
influence of the prevailing climate of thought. There being no dictionaries in those days, an
important function of the definitions was to ensure clarity as to the meaning of key words used
in the study.

Today there is a different intellectual climate. Ideas concerning Euclidean geometry went
through a revolution in the 19th century, in the wake of the emergence of non-Euclidean
geometries. Formerly, most mathematicians would probably have considered it obvious that
there is only one straight line through a given point and parallel to a given straight line. Now it
became accepted that there might be none, or more than one, depending on the type of
geometry.

The question was, what else that had been widely considered to be self-evident might prove
not to be in fact so? A new awareness arose of assumptions, and the need to question them.
What right had one to assume anything, other than what was given as an axiom or postulate?*
Did that mean that more were needed?

* In the resulting maelstrom of ideas, somewhere along the line a number of mathematicians ceased to use the word axiom
in its traditional sense, as a self-evident statement that is granted. For some reason the term postulate did not come to the

fore in its place — perhaps stemming from uncertainty as to what Euclid’s corresponding term meant.
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As for definitions, what was being assumed in them? An ideal emerged that all terms of a
geometric nature be defined, not just a few that were judged to be key ones. For example,
Euclid defines a line as having length but not breadth. But what is length, and what is
breadth? Euclid’s set of definitions was not designed to cope with such requirements, and
therefore could not be part of the new thinking. A fresh look was required.

Influenced by these and other considerations, there was a tendency for geometry to become
more abstract in the late nineteenth century. The movement culminated in David Hilbert’s
Griindlagen der Geometrie, published in 1899 [Foundations of Geometry]. Amongst other
things it was intended to tackle problems arising connected with the aforementioned changes
in thinking concerning geometry. But its especial merit was in casting light on questions of
great interest to mathematicians: how do we know that the axioms of geometry are consistent

with one another, and that they are independent of one another?

This was its strength. Its weakness lay in the difficulty in using it to prove ordinary theorems

of geometry — not least because it dispensed with diagrams (in principle).*

Since then the belief has grown and spread amongst mathematicians that in order to tackle
geometry properly it needs to be done without diagrams. This stems from Hilbert’s above-
mentioned work, which when it came out aroused vigorous opposition, but later won the field
because it was able to tackle such important questions, and because it was considered to be
rigorous — at least initially. There have been a number of other formulations on similar lines

this century, presumably in pursuit of rigour.

Geometry for an Oral Tradition is not simply presenting a way of thinking which could have
existed before writing. There is a definite attempt to set it in the modern context — to
update it — so enabling mathematicians to take it seriously, as a valid approach today.

* And that almost certainly arose in this way. Attempting to define all terms of a geometric nature proved not to be easy;
for each of them is usually defined with the aid of one or more others. But that is the sort of thing which can go on and on
— or else round in a circle. Where are we to start? Very likely it was in order to cut across this that Hilbert proposed
starting with three undefined terms: point, line and plane. That is, they are not assigned their ordinary meanings. In that

case, what sense can be made of figures? Hilbert decided to dispense with them.
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There is a further point in connection with the opening question, however. As well as general
considerations concerning current ways of thinking, there are the special requirements of this
particular study. These preclude the use of at least two of Euclid’s definitions (of angle and

Jigure), and possibly more. [See The Rationale of eight key definitions, Commentary, Part II,
3(g)]

To sum up, there are two reasons for not using Euclid’s definitions: firstly, the needs of this
particular study are different from Euclid’s, and secondly there is a very different climate of
thought today from that in Euclid’s time. To set this material in today’s context, a different set

of definitions is required.

OVERVIEW

The following are amongst the more important points in the Commentary:

(i) The significance of the distinction between stated and unstated assumptions is
discussed. [Part I]

(i)  In this system language is shown to play an especially important role. [Part II]

(it1) It 1s shown how Provisions 1 and 3 are related. [Part II]

(iv)  The background is explained, to the selection of a criterion for selecting words to
be included in the list of definitions. [Part II]

(v)  Some important objections to the inclusion of movement in geometry are noted

and answered. [Part IV]
(vi)  Since figures are central to a study of geometry such as this one, there is a need to

ensure that they are used validly. What are the relevant rules? Some are known, others are

proposed;
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more accurately, they may all be known, but do not appear to have been assembled

in one place, and a step towards this is attempted here. [Part V]

(vii) The nearest equivalents in the present text to Euclid’s five common notions and

five postulates are given. [Part II]

PART I SOME BASICS

1. STATED AND UNSTATED ASSUMPTIONS
If assumptions or agreements are stated they become part of the formulation: it gives them
status. Unstated agreements, by contrast, creep in by the back door. They may be more or less

acceptable but they have not been stated as part of the set-up.

And that is the reason for stating the Provisions. If they were not mentioned they or suitable
alternatives would need to be assumed just the same. Being unstated assumptions they would
be points of weakness in the chain of reasoning — running the risk of allowing objectionable

features into the system.

But, one might object, does it matter if Provisions 1 and 3 are left unstated? Possibly it does
not. The question is, is it or is it not acceptable to have unstated assumptions in a piece of
reasoning? An unstated assumption is a potential source of weakness. If the aim is rigour,

unstated assumptions are not acceptable.

But if it is argued that some unstated assumptions are harmless* and others are not, what

criterion is there for distinguishing between them?

* In this context, harmless = not at risk of undermining the soundness of the argument.
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Is it possible to have such a criterion? Usually assumptions need to be recognised and stated
individually. There does not seem to be a formula available for flushing them out. So if there
is no known pattern to them, what hope is there of finding a criterion for selecting the

harmless ones?

If it is argued that a judgement can be made, as to whether a given assumption is harmless or

not, then agreed, so it can. Of course, the judgement may be mistaken.

The same point (about making a judgement) could at one time have been made about Euclid’s
method of superposition. It seems it was a method in common use (Euclid calls it a common
notion), and generally considered to be harmless enough. True, it did not abide by the
Pythagorean ideal of excluding movement from geometry, but a blind eye was turned to that.
The mathematicians could get away with it, though the philosophers could not. Yet more than

two thousand years later it was shown that there are circumstances in which it is not valid.

Not only does honesty require us to state any assumptions we are aware of, respect for

certainty in the reasoning requires it.

From the students’ point of view, unstated assumptions have a serious drawback. They are left
to guess what is being assumed — and they may or may not be aware that there is an
assumption. This does not make for clarity. There is something they are not being told, and at
some point they may well sense this. Furthermore, it might not be straightforward. If it is, of
course, then no problem. But how are the students to know? The sense of something lurking
and unmentioned is uncomfortable — it might even raise fears of the unknown for some, lack
of clearly stated reasoning bringing out the irrational. Others might wonder what it is they are

not being told. Might it be something so difficult that it is better not to mention it?
To conclude, it is much better not to have lurking, unstated assumptions. This is more

satisfactory because it is more rigorous, because it is honest, and because it keeps the elements

of the investigation clear and open, making things easier for the student.
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2. THE MATERIAL AND INSTRUMENTS OF GEOMETRY

For example, a sheet of paper is commonly used as a material of geometry, and a pen, straight
edge and compasses are amongst its instruments. But more instruments are to be found in the
Provisions, and so let us start there.

Reason and language are brought to bear on the subject by mankind (Provisions 3 and 1).
Provision 4, the Postulate, can be thought of as coming from geometry, and Provision 2 from
the interaction between them. But as the following diagram representing these points shows,
the study of geometry uses more instruments than this.

Mankind’s contribution (The needs of) Geometry
Language Postulates, axioms,
Reason theorems, etc.

Interaction between them
The drawing of figures
(Problems of construction)

Diagram 1 Allocation of the material and instruments of geometry to their chief sources.

It is quite instructive to take one or two simple examples of proofs, and to observe the need
arising for one or other of the instruments of geometry. The following example gives the idea.

Suppose a group of people, untutored in geometry, encounter a path tiled in squares, and are
fascinated by its simplicity and regular order. They could, if so inclined, observe that all the
angles are equal, and may be led by observing the patterns to the considerations shown in
Diagram 2.

* *
* %

EJES

Diagram 2 Patterns of angles noted, within a simple pattern of squares.
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There are four of these angles in a square, and also four of them clustered around a point.
Being equal angles, it follows that the angles in a square, taken together, cluster neatly around

a point. As we might put it, the angles in a square total a complete turn.

There is an insight here, giving rise to a recognition of something new — a piece of knowledge.
The latter we call a theorem*. It is a statement of something we did not start off with, but
arrived at. When dealing with more than one example such terms begin to be needed, so that

the study can be formulated systematically. A theorem is one of the instruments of geometry.

Having begun in this way it soon becomes apparent that other terms (instruments) are needed.

E.g. there is a need to state what a square is, and such a statement is called a definition.

Also, how was it recognised that all the angles in the pattern of squares are equal? Was it the
recognition that they are constructed in the same way? Did our group of people get a chance
to play with the tiles, and to recognise that each one fits equally well if turned round, or if
turned over, and that any tile can fit in any one of the squares? The reader may have picked up
hints of Euclid’s method of superposition or of Provision 4 in this second approach, and of

Proposition A2 in the first: magnitudes which are constructed identically are equal.

To turn to another matter, for those interested in following up the distinction between

materials and instruments the following points may be noted.

1. A material is something to be worked on and an instrument (or tool) something to be

worked with. The one has a passive role and the other an active one.

2. Examples
Context Material Tools or instruments
Woodwork Wood Saw, chisel
Geometry Paper (plane) Pen or pencil, compasses

* Note the similarity to the Greek word theos = god. Doubtless this is because the Greeks thought of knowledge as being

of divine origin.
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3. However, whatever is in the process of being fashioned is the material currently being
worked on. If a tool is being made, it is playing the passive or material role until such time as
it is ready for action. Likewise if a theorem is in course of being proved, it 1s currently the

material being worked on, the matter in hand. Thereafter it is an instrument.
4. Language is both an instrument for the expression of thought and a storehouse of concepts

— a source of material. [A dictionary presents the material aspect of language, using language

as an instrument for conveying the thoughts needed. ]

PART II LANGUAGE AND REASON

“. .. educated people are apt to forget that language is primarily speech.”

Otto Jespersen, Essentials of English Grammar
1. GEOMETRY AND LANGUAGE IN AN ORAL TRADITION
How the study begins

Representing some of the simplest forms observed around us in figures, geometry is

concerned with studying these, language being its principle instrument.

STARTING POINT

FIGURES LANGUAGE

DEFINITIONS / \

related to figures other definitions

Children learn a lot about geometry at an early age, through play.* Later, the more formal

study is begun having learnt a language, and being familiar with figures — perhaps having

* T am told they are fascinated by the five Platonic solids.
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learnt to draw them with straight edge and compasses. And we start knowing all the words
used to describe simple figures. Indeed we start knowing much more, for all dictionary

definitions are available, and apply until they are replaced.*

Now for the next step in the study. For various reasons it is convenient to replace or restate
dictionary definitions for some key words — sometimes in order to use the new definition in
proofs. Hence the next step: a list of definitions (or perhaps we should call them

‘redefinitions’).

The two stages of study

The study continues, but a pattern is beginning to be evident which is worth noting. For it

emerges that a study such as geometry takes place in two stages:

first a language is learnt;
secondly, using relevant words contained in the language, the latter is used to formulate

a study of geometry.

It is possible that this is the origin of the division of education into primary and secondary

stages.

How a study enriches language

How does it come about that a language contains within it the words needed to study
geometry? In the first place, the language is enriched by the study of geometry. This puts the
language in the position that the study of geometry arises from it. A diagram illustrates this

process:

* What is the equivalent of a dictionary in an oral tradition? Whatever it is, calling it a dictionary is convenient for these

purposes.
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LANGUAGE THE STUDY OF GEOMETRY

wider vocabulary,
ENRICHED LANGUAGE incorporating words
such as ‘axiom’ and
‘theorem’

¥

A FORMULATION OF THE STUDY OF GEOMETRY

That is, the language becomes a repository for concepts, building upon which an exposition of
geometry can be formulated.

2. REASON AND LANGUAGE
2(a) THE LANGUAGE OF PROOFS

A proof can be spoken: it uses language, sometimes differing little from everyday speech.
For example, here is a line of proof:
Length AB is equal to length CD, they being opposite sides of a rectangle.
This line (or step of the proof) is also a sentence, although it can be broken nto two
sentences thus:
Length AB is equal to length CD.

This is because they are opposite sides of a rectangle.

The reason or justification of a step in a proof is often expressed in another theorem. For
example, suppose we have established

Theorem X: opposite sides of a rectangle are equal.
The above line of the proof can then be put,

Length AB is equal to length CD [Theorem X].
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A few steps of proof may combine to establish a theorem.

The analogy in language is a paragraph, a few sentences being used to make a point.
A series of theorems (and therefore of proofs) may be used to establish a result (a theorem).
If so, they resemble the use of a series of paragraphs to establish some larger point, as in an

€ssay or reasoned argument.

Short-hand
Mathematical symbols provide short-hand. For example,
AB =CD [Theorem X].
This 1s clearly a simpler way of writing the line of proof discussed earlier. Its great advantage

1s that it states the essentials.

Of course, in an oral tradition such a line would be spoken. That being so, what need does an

oral tradition have for such short-hand?
Whatever the answer to this question, certainly it is useful in the present book!
Longer proofs

A few steps in a longer proof may combine to form a sub-theorem, or lemma, a result of too

little generality to be considered as a theorem in its own right.

Counting this sub-theorem as a paragraph, the whole proof may be likened to an essay,

presenting a reasoned argument.

Note that the form described here is essentially the same as that for a sequence of proofs (or

theorems).

In law courts and in lectures, lengthy reasoned argument is not unknown (lectures commonly
being accompanied by visual display of information). Even today, the oral tradition is not

totally absent.
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Naming key theorems

A device used in teaching geometry to children is to give a short-hand reference to key
theorems — names such as ‘vertically opposite’, ‘corresponding angles’, ‘two sides and the
included angle’, etc. This makes it easy to refer to them; also, it tells us that they are important
theorems.

This device is undoubtedly useful in an oral tradition.

2 (b) TO WHAT EXTENT ARE PROVISIONS 1 AND 3 INDEPENDENT OF
ONE ANOTHER?

(i) What are the similarities and differences between reason and language?

How reason and language are related is a matter of some interest, and is examined next.
First consider THE NATURE OF LANGUAGE. Here are three things that characterize it.

First characteristic. One description of language is that it consists of speech, listening and
understanding, this last taking place mentally. The words take one to the brink of
understanding, but the understanding itself lies beyond them.*

Second characteristic. It uses sentences, each of which is intended to convey a single
thought.**

Third characteristic. The primary purpose of a language can be explained in terms of the
purpose of a sentence: it is to enable two people to share a common thought.

Next, WHAT IS THE NATURE OF REASONING? This, too, is now characterized by three
things.

First characteristic. Reasoning can be described as consisting of speech, listening and

making inferences. What is inferred is called the conclusion.

* This makes it possible to rephrase what is said.
##% The Shorter Oxford Dictionary defines a sentence as a series of words in connected speech or writing, forming the

grammatically complete expression of a single thought.
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Second characteristic. The argument and the conclusion can be spoken, but recognizing that
the conclusion is valid is done mentally. It is a contribution made by the speaker in drawing
that conclusion, and made independently by the listener in recognizing that the conclusion is
valid. This_, of course, is the role of Provision 3.

Furthermore, note that the listener needs to understand the argument in order to recognize that
it 1s valid.

Hence, reasoning shares in common with language the elements of speaking, listening and

understanding.

Third characteristic. If two statements imply something, then reasoning is the act of
recognizing what they jointly imply (the conclusion).

An example 18, firstly recognizing that turning a pencil sufficiently to point in the opposite
direction is making a half turn, and then recognizing that on rotating the pencil through the
three angles of the triangle in succession, it points in the opposite direction. The conclusion is

that the angles of a triangle total a half turn.

What does ordinary language possess that is analogous to this? Well, for a start, in speech it is
normal to use a number of sentences. The comparison with reasoning therefore leads us to ask:
given that one or more sentences have already
been spoken and understood, what does a

further sentence contribute to the meaning?

This is investigated in the next section. The enquiry has so far shown that reasoning and
language share the important characteristics of speech, listening and understanding. Evidently
their structure is similar, and yet they appear to differ substantially in respect of the third
characteristic of reason. As will now be shown, this apparent difference dissolves away on
closer investigation, but not until it has led us to think about language in a way that proves to
be highly relevant. And in dealing with this point, it becomes clear where the ability to

recognize valid reasoning fits into the picture.
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(ii) What does each additional sentence contribute to the meaning?

Example 1 ‘London. Fog everywhere.” Charles Dickens, Bleak House.

Here, the second sentence ADDS something to the picture being built up.* And the succeeding
sentences each add more, in turn. This is one type of contribution: each sentence ADDS to the
meaning.

In a longer example, i.e. one with more sentences, we might prefer to speak of each additional
sentence as modifying the meaning. Thus ADDITION and MODIFICATION can be two ways
of describing the same thing. But modification can also refer to a replacement of something
said, possibly an updating, as in the next part of a story.

ADDITION and MODIFICATION account for a lot of cases, and that is sufficient for present
purposes — there is no need to cover all possibilities.** But a third type is of especial interest
to us. It can be called IMPLICATION.

The contribution made by an extra sentence can also be to imply something. There might be
an act of reasoning involved, or there might be such things as topical allusions, association of
ideas, hinting at things, etc. Looked at in this way implication includes reasoning but casts a
wider net.

First example He is a man, and men are mortal.

The conclusion is implied, and need not be stated. But by not stating it more is hinted at,
depending on the context. Saying less achieves more, reason being filled out by the
imagination.

Second example ‘It is a truth universally acknowledged that a single man possessed of a good
fortune must be in want of a wife’. Jane Austen, Pride and Prejudice

Like the previous example, this is a compound sentence, and it can be broken down into
simpler sentences. A dialogue being a good way of doing this, let two additional characters
retell it to us — Belinda and Amelia.

* It is acceptable to omit words from a sentence, where the meaning is readily clear without them. In this case the
principle has been taken to extremes — and yet the meaning is clear enough. In fact, shortening the sentences heightens the
dramatic effect. A fuller version of these highly abbreviated sentences might be, “The place is London. There is fog
everywhere’. Yet do the extra words contribute anything? More is achieved by the shortened form.

** Other contributions made by an additional sentence include reinforcement of what has been said (such as affirmation or

emphasis) and attempis to present an aiternative version (e.g. contradiction or correction).
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Amelia They say he is single. What is more, he is possessed of a good fortune.

. Belinda Then he must be in want of a wife!

Amelia Indeed he must. "Tis a truth universally acknowledged.

This 1s certainly an example of implication. There is more going on than is actually said.
Belinda’s statement is put as though it were a deduction, which it certainly is not. But Amelia,
having accepted Belinda’s ‘conclusion’, proceeds to compensate for the dubious logic by
elevating it to the status of a universally acknowledged truth. Nothing is being done by half

measures here!

I suggest that, so long as we follow what is being said, we register that this is bogus logic. If
s0, how can we tell that it is bogus?* Is it because we have the ability to recognize valid

reasoning? Briefly put, the answer to this is surely “Yes’.

These examples point to the conclusion, that the ability to recognize valid reasoning is an
aspect of understanding language. In other words Provision 3 is an aspect of Provision 1.
However, acknowledging this in principle does not oblige us to merge them. We can choose to
keep them as separate statements. If reason belongs to language, still, we may wish to

acknowledge when it is reasoning that is relevant rather than simply communicating,

One further point concerning understanding and reason: we have no reason to suppose that the
nature of understanding varies according to the language used, although we do have more
difficulty in an unfamiliar language. The context changes, but not the faculty. What changes is

how it operates.

And having concluded that the ability to recognize valid reasoning is an aspect of
understanding, the same point applies to reasoning: we have no reason to suppose that the
faculty itself varies according to the context, although in some it operates easily and in others

less so. [Of course, to develop reasoning ability, plenty of practice in simple contexts helps.]

* The game is to pretend not to notice. Recipe: take a piece of dubious logic, then to make the ‘conclusion’ doubly sure
raise it to the status of a universally acknowledged truth. Better still, start on a grand note by reversing the sequence. And

this . . . is what Jane Austen does.
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2 (¢) WHY THE STUDY OF GEOMETRY IS SO VALUABLE
On seeing two women hurling insults at one another across an alleyway:
‘Those two women will never agree; they are arguing from different premises’.

Sydney Smith

Traditionally, geometry is important for teaching the use of reasoning, and giving practice in
it. And a context is needed in which to practice reasoning and communication, free of the
influence of such things as beliefs, opinions, ideas and feelings. How these can interfere with

communication is now discussed, and one suggestion given as to what can be done about it.

So far the discussion has focused on communication taking place fully, without a hitch,

speaker and listener sharing the same thoughts [Diagram 1].

What has already been said The sentence currently being spoken

4

Diagram 1 Communication working fully

But we each of us have our own beliefs, opinions etc., and when something is said they can
make an additional contribution to the meaning, so changing it. Some of them may act as
though they are additional sentences, others may colour our understanding of what is said.
They can be called hidden factors or influences. This is shown in Diagram 2.

Opinions, beliefs, etc., plus What is currently
what has already been said being said

Diagram 2 Imperfect communication

However, the aforementioned points apply both to the speaker and to the listener, and a fuller
version of the diagram needs to take this into account. [See Diagram 3].
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The speaker’s beliefs, opinions, What is currently The listener’s beliefs,
etc. plus what has already been said being said opinions, etc. plus what
has already been said

Meaning to the speaker Meaning to the listener

Diagram 3 Showing how misunderstanding commonly arises in communication (which may

include an element of reasoning)

This is the situation. What can be done about it? One of the things which can be done is to
practice reasoning in a context where hidden factors do not have a role. Geometry provides

such a context.

We need to know what it is like to understand what is said free of hidden factors — not least,
when there is an element of reasoning present. And one reason why we need some experience
of operating under these conditions is so that we can get used to registering when
communication and reasoning is not working in that way, but rather is influenced by such

things as hidden assumptions.

3. THE VOCABULARY OF GEOMETRY

This essay discusses redefinitions: why words are redefined, and how words are selected for
redefinition. It concludes with a discussion of the significance of the definitions of magnitude
and equality. This shows that, a language with redefinitions being a storehouse of information,

there is a choice between using it as such or finding alternatives (in the form of axioms).

3 (a) Redefinitions

Good dictionary definitions are available. Why do geometers insist on replacing them?

Briefly the answer is, to sharpen the language, adapting it to the purpose in hand.
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As an example, consider the following comparison of a dictionary definition of a rectangle
with that chosen for this book.

The Shorter Oxford Dictionary gives: “rectangle”: a plane rectilinear four-sided figure having

all its angles right angles and therefore its opposite sides equal and parallel.
This tells us the chief properties of the figure, which of course is useful for someone enquiring
what a rectangle is. By contrast it is much more useful in the definition used in the present
text, to give just what suffices to specify the rectangle. And since it is already understood that
the figure is in a plane, a single property of a rectangle suffices:

“rectangle”: a quadrilateral with all angles equal.

This definition can be seen at work in the following construction of a rectangle.

Draw two intersecting lines, and a circle about the point of intersection (Fig 41).

Fig 41

The four intersections with the circle are the corners of a rectangle; for all four angles having

been constructed identically, they are equal.

3(b) Other differences between dictionary definitions and those of geometers
Dictionary definitions commonly offer a number of meanings for a word, leaving it to the
context to make clear the appropriate one. This provides possibilities of ambiguity, and there

is nothing wrong with this; it is very useful for a poet. But geometers are made of sterner stuff

and have their eyes on a different goal: unambiguity.
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A second difference occurs because all dictionary definitions are given in terms of words, all
of which are defined in the dictionary. In consequence, dictionary definitions are ultimately

circular.

This can be put another way. Look up a dictionary definition. Noting one of the words in this
definition, look it up in the dictionary in turn, and continue this process. Sooner or later a
word will be encountered which has already been looked up. This gives the possibility of

going round the same loop again, if we wish — or of finding another one.

In contrast to dictionary definitions, those of the geometer are given in sequence, just as steps
of reasoning are given in sequence. The unwritten rule is, that no word which is to be defined

may be used until it is defined. This tradition goes back to Euclid, possibly being even older.

Note that, in a list of definitions preceding a text, this rule is not a logical requirement. It can
be breached without contravening the laws of reason — although, not being customary, it might
be found disturbing. Yet words resting on dictionary definitions are subject to this sort of

circularity, and we are obliged to make some use of them.

The linear sequence of the geometer may be likened to part of a straight line ( a segment) and
the circularity of dictionary definitions to a circle — two very appropriate images for a study of

geometry.

The linear sequence of definitions works if it is short enough. An analogy is given by the
surface of our planet, which can appear to be like a plane over short enough distances, but

whose spherical nature asserts itself over longer distances.

3(c) A pessible criterion for selecting the words to be redefined

During the nineteenth century the idea emerged that ideally, all words and phrases which refer
to a figure in some way should be redefined. For brevity, let us call such terms ‘geometric

terms’, or ‘terms with geometric content’. An interesting thing about them is the way other

geometric terms are used in their definitions.
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Consider, for example, the first six definitions in Euclid’s Elements (which begin his book):

Definitions

1. A POINT is that which has no parts or which has no magnitude.

2. A LINE is length without breadth.

3. THE EXTREMITIES OF A LINE are points.

4. A STRAIGHT LINE is that which lies evenly between its extreme poimﬁ.
5. A SURFACE is that which has only length and breadth.

6. The EXTREMITIES OF A SURFACE are lines.

All six definitions use geometric terms to define geometric terms. Other examples show the

same things happening. Why is this?

It can be argued, how can geometric content be brought into a definition, except by using

terms with geometric content?

Let us consider the consequences of supposing that all geometric terms need other geometric

terms in their definitions.

Consider all possible geometric terms, each with its own definition. Together they constitute a
mini-dictionary. And they have the same circularity that occurs within a dictionary, for the

same reason.

That is, all geometric terms cannot be defined without circularity — if all of them really do

need to be defined using other geometric terms.
3(d) A rethink of the selection of words to be redefined

The evidence suggests that the proposed ideal is unattainable, and that all geometric terms
cannot be redefined without circularity. To deal with this we could consider dropping the
requirement that there be no circularity. But leaving that possibility aside, a response which
comes to mind is to formulate a different ideal, making use of an alternative criterion to do so:
words needed in the study are redefined, unless they are commonly used terms, in which case

redefinition is optional.
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This criterion accords well with an oral tradition. It has the consequence that the definitions
depend on a core of words in common use. That is to say, we acknowledge that such words

are well known and make use of them.

Note that the terms defined in this book can be put into four categories. These are, words
related to: (1) drawing instruments and material; (ii) theorems, axioms, corollaries, etc.;

(iii) figures; (iv) magnitude or its properties. The last two categories slightly overlap.

3(e) The role of definitions

Russell and Whitehead make some relevant observations concerning definitions in their

Principia Mathematica.

(1) They say that theoretically it is unnecessary ever to give a definition: e.g. if a word is

defined by a phrase, the latter can always be used, in which case the definition is redundant.

(2) They add *....nevertheless....... [definitions] often convey.......important information. This
arises from two causes. First, a definition usually implies that the definiens [that which is
defined] is worthy of careful consideration. Hence, the collection of definitions embodies our
choice of subjects and our judgement as to what is most important. Secondly, when what is
defined is (as often occurs) something familiar........ , the definition contains an analysis of a

common idea, and may therefore express a notable advance”.
Two points conclude this section.

(1) Names of magnitudes apart, (Iength, angle, area), only two words concerning magnitude
or its properties have been needed here: ‘magnitude’ and ‘equality’. Being an important topic

b

this category is given a section to itself.

(2) Euclid’s definitions largely relate to figures, except for his Book V definitions, which

deal with properties of magnitudes. But he does not define either ‘magnitude’ or ‘equality’.
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3(f) The significance of the definitions of magnitude and equality

Firstly, the proofs given in this book and in Euclid’s ‘Elements’ deal with the equality or lack
of equality of lengths or angles or other magnitudes, and little else. Essentially, Euclidean
geometry is a study of magnitudes in figures. If we omit to define key words in this fourth
category, words important in proofs are left resting on dictionary definitions. [Except that
Euclid has a different procedure. What follows explains this.]

Secondly, by defining magnitude it becomes possible to demonstrate that lengths and angles
and areas are magnitudes, instead of just assuming that they are.

Thirdly, there is a significant issue concerning definitions and axioms, which will now be
addressed. Consider the definition of magnitude.

Definition 4: Magnitude is that of which the whole in no way differs from a part save in size.

Here, the concept of size is understood. In consequence, we understand that some sizes are
greater and some less. In particular, the whole of a magnitude is greater in size than a part.

This, which Euclid gives as an axiom, follows from our understanding the concept of size.
More precisely, it follows on being granted the language and also Definition 7.

It can be expressed formally as a theorem, given here rather than in the text, since it has not
been needed there.

Theorem Z The whole of a magnitude is greater than a part.

The above Proof of this theorem draws on our understanding of words. By expressing it as an
axiom, Euclid is by-passing this procedure. He is not making full use of what is stored in the

language and can be drawn from it with the aid of suitable redefinitions.

Objection: If a word such as ‘size’ is not assigned a special definition (i.e. redefined), surely

it should not be assigned a key role in a proof.*

* Examples of proofs resting purely on definitions are given in Propositions A10 and A12. In the latter, it is shown that the

straight line through two points in a plane lie in that plane.

66



COMMENTARY: PART 11

Answer: The position taken here is that the language is provided, including all its words, and
that common or everyday words such as ‘size’ need not be redefined. This makes them

available in proofs.
Consider next the definition of equality.

Definition 6: Magnitudes which are indistinguishable from one another except by position are

said to be equal to one another.

This rests on the concept of indistinguishability. And it is the understanding of this concept

which is used to prove Proposition A4:

Proposition A4 Theorem: Magnitudes which are equal to the same magnitude are equal to one

another.

Euclid simply gives this as an axiom*- again by-passing what is stored in the language, and
accessible with the aid of suitable redefinitions. The same remarks apply to Propositions A5

and A6, which Euclid also gives as axioms.

The conclusion is that drawing on what is stored in the language, with the aid of suitable
redefinitions, can yield theorems which may otherwise need to be given as axioms, Otherwise
put, axioms may be used to by-pass what is stored in the sharpened language (the language
modified by the list of definitions).

One view of the matter is that we need not be overly concerned to make full use of what is
available in the sharpened language, since it can always be replaced by axioms. A counterview
is that it is more direct to make the best use of the starting point available with sharpened

language, rather than bringing in axioms unnecessarily.

* See first footnote, Part 111
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How would Euclid have reacted to all this? His chief concern would probably have been that
the Proof of Proposition Z does not rest on any axioms or propositions, but on concepts
contained within the language. In his system, although definitions do play a part, propositions
are generally derived from other propositions or from axioms or postulates, which serve to set
the ball rolling.*

In the present system, propositions are not only derived from other propositions, but also from
the Provisions. And the language is included in the latter, giving it formal status (both as an
instrument and as a source of material, in the form of words).

Thus in this system it is possible not merely to acknowledge that some words contain
information of value in geometry, but to make use of them in proofs — whether they have been
redefined or not.

However, it is also worth noting that it would be acceptable to treat the four theorems
discussed here as axioms, as Euclid does. The validity of the present system does not depend
on this issue.

3(g) The rationale of eight key definitions

Euclid’s definitions serve as a useful comparison, for discussing the suitability of the
definitions chosen here. The eight are: angle, figure, line, straight line, surface, plane, circle,
point. For the first two of these the definition necessarily differs from Euclid’s.

1. ANGLE The definition is, that an angle is a measure of change in direction. This works
hand in glove with Prop. B4. An example is the theorem that the angles of a triangle total a
half turn.

2. FIGURE Euclid defines a figure as that which is enclosed by one or more boundaries. This
is too restricted in scope for the crucial Propositions Al and A2 (q.v.). The much freer and
more wide-ranging definition that a figure is a drawing in a plane meets their needs.

3. LINE How a line is defined, here, tells how one is drawn. The tip of the pen, idealized as a
point, leaves a trace where it meets the paper. Hence the definition:
the path traced out by a point on a moving body is called a line.

* However, in some of Euclid’s proofs the object is to demonstrate that a certain definition is satisfied. For example, he

shows that the construction of a square satisfies the definition of a square [Euclid I, 46]
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In a much earlier draft I tried defining a line as that which suffices to link two points. But then
there is the need to demonstrate elementary properties of a line, such as that its breadth is that
of a single point (Prop. A8). These follow swiftly and easily with the definition chosen.
Having resisted the latter initially, yet not seeing a better way forward, I was led to register

that this is a satisfactory solution.

Euclid’s definition of a line (No.2,p.64) is a good one, granted the meanings of length and
breadth. Possibly it implies what is stated in Props. A8 and A9, and Corollaries, in which case
it could be used here in this book. However, unless Euclid’s definition of a surface is also

used, his definition of a line looks out of place.

4. STRAIGHT LINE Euclid’s brief definition (No.4,p.64) is a descriptive one, intended to
leave us clear what a straight line is. He uses it by going on to grant that straight lines may be
drawn (his Postulates 1 and 2). In practice an instrument is provided for this — the straight

edge.
Yet given a straight edge, one needs to be given two points through which the line passes in
order to draw it — unless any straight line will do. That being so it is more direct to use this in

the definition:;

that line which is uniquely specified given two points on it

is said to be straight.

Thus, both a line and a straight line are defined in accordance with the manner in which they

are drawn (or would be, if we could draw the whole of a straight line).
SURFACES, INCLUDING PLANES

5. PLANE First, assuming that we know what a surface is, let us attend to the definition of a

plane. Euclid’s definition is ingenious:

a plane surface is that in which any two points being taken,

the straight line between them lies wholly in that surface.
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The objection to this is that it includes an axiom to the effect that the straight line through any
two points in the plane lies in that plane. [This is discussed in an Encyclopaedia article
somewhere. ]

Approaching the matter another Way, we know from experience that it takes three points to
support a plane. From this, the definition naturally arises, that a plane is that surface which is
uniquely specified given three points on it. It follows that the straight line through any two
points in the plane lies in that plane — no additional axiom needed here! (There is a benefit in
so defining a plane that it is a generalisation of a straight line.)

6. SURFACE Besides using two points to position a straight edge, two things we want to be
able to do when drawing in a plane are:

(i) to link two points by any number of lines, and

(ii) to draw a straight line through a given point in any direction of the compass.

By basing the definition of a surface on these two properties we save ourselves the trouble of
proving that a plane possesses them. For it is (to be) granted that a plane surface 1s available.

What follows carries out this plan.

As a first step towards this, note what a complete turn does: it passes through all the directions
of the compass. This means that Item (ii) above can be replaced by:

a complete turn can be made at any point of a plane surface,
without leaving that surface.

This can be expressed more compactly:

a plane surface contains a complete turn at each point.
However, a complete turn does not occupy an area. If we want any surface to be like a plane
in the immediate locality of each of its points,* all we have to do is to stipulate that a surface

contains a complete turn at each point.

These considerations give rise to the following definition of a surface:

* Le. not folded. Curved surfaces resemble a plane on a small enough scale, as we know from experience on our planet.
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Definition A surface suffices to contain a complete turn at each of its points, and a multitude

of lines linking any two of them.

NOTES (1) A line does not contain a complete turn, nor does a point. These may bound a
surface but they do not themselves satisfy the definition of a surface. A line contains two
directions at any point on it; a point contains none; a surface contains all the directions of a
complete turn, at any point on itself.

(2) As defined, a surface may be of infinite extent, like a plane or an infinite
cylinder: it may close in on itself like a sphere or doughnut (torus); it may have boundaries
(lines) and/or holes (bounded by lines, and possibly by points also) and/or slits (consisting of
one or more lines or points).

(3) A complete turn, considered as a whole, is like an element of a surface.

7. CIRCLE Before discussing the definition of a circle, there is a question needing attention,

because it influences what is considered to be appropriate as a definition of a circle.

Question What is the distinction between a circle and its circumference?

Reply It seems the answer depends on which definition of a figure is accepted.
Euclid’s definition A figure is that which is enclosed by one or more boundaries.

Accordingly, the circumference is the boundary, and that and everything inside it constitutes

the circle. [Note that Euclid’s above definition requires that figures be closed.*]
G.O.T. definition A figure is a drawing in a plane.

[Alternative definition A figure consists of lines and/or points in a plane. This alternative

leaves no doubt that points are considered to be parts of a drawing.]

According to this, the circle consists of the centre point and the circumference. This answer

influences the choice of definition of a circle [Definition 34].

* This can be put another way: Euclid’s approach depends on it sufficing to consider closed figures.
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Euclid’s definition of a circle would be out of place here because it goes with a different

definition of a figure. He speaks of a circle as being a figure contained by one line.

8. POINT Today, a point is thought of as a position. Add that it is without magnitude and a
definition emerges. The definition chosen here uses the alternative statement that a point is

without parts, from which it follows that it is without magnitude.
Definition A point has position but no parts.
However, there remains a question. Is such a definition a statement of what suffices to specify

a point, or is it a full statement of its nature? Clearly it is not the latter. Then what is the full

nature of a point?

PART III COMPARISONS WITH EUCLID’S ELEMENTS
Sir T. L. Heath’s The Thirteen Books of Euclid’s Elements is the translation used here.*

1. TESTS OF CONGRUENCE

EUCLID GEOMETRY FOR AN ORAL TRADITION
The method of superposition Proposition A1 Theorem

If one figure can be placed on another so Figures which can be constructed identically are
that they coincide at all points the two congruent.

figures are congruent.

* Other translations differ over terminology — e.g. what Heath translates by common notions are called axioms in the

Todhunter edition of the Elements.
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2. SOME DIFFERENCES IN TERMINOLOGY

TRANSLATIONS OF

TERM EUCLID’S ELEMENTS PRESENT SYSTEM

1 Straight line Of finite length. Unlimited in either direction.

2 Figure Definition. A figure is that which is  Definition. A drawing in a plane is
enclosed by one or more boundaries. called a figure.

3 Transversal A line intersecting two A line intersecting two other lines,
parallel lines. whether the latter are parallel or

not.

4 Corresponding angle Used only if there is a line Applies if there is a transversal to

intersecting parallels. two lines, whether the latter

ntersect or are parallel.

3. EUCLID’S POSTULATES AND COMMON NOTIONS AND THE
NEAREST EQUIVALENTS IN THE PRESENT SYSTEM

EUCLID’S POSTULATES NEAREST EQUIVALENT

Let the following be postulated: Provision 2.

1 To draw a straight line from any point The following are provided: a plane, a pen, a
to any point. straight edge and a pair of compasses.

2 To produce a finite straight line
continuously in a straight line.
3 To describe a circle with any centre

and distance.

4 That all right angles are equal to one Prop. B7 All right angles are equal.

another.

5 That if a straight line falling on two Provision 4 Magnitudes are unchanged by
straight lines makes the interior angles on motion. [This works through Proposition A3]

the same side less than two right angles,
the two straight lines, if produced
indefinitely, meet on that side on which

are the angles less than the two right angles.
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EUCLID’S COMMON NOTIONS NEAREST EQUIVALENT

1. Things which are equal to the same thing ~ A4 Theorem Magnitudes which are equal

are also equal to one another. to the same magnitude are equal to one
another.

2. If equals be added to equals, the wholes AS Theorem Equals being added to

are equal. equals, the totals are equal.

3. If equals be subtracted from equals, A6 Theorem Equals being taken from

the remainders are equal. equals, the resultants are equal.

4. Things which coincide with one another Al Theorem & A2 Theorem Figures which

are equal to one another.* are or can be constructed identically are
congruent, and magnitudes which are or can
be constructed identically are equal.

5. The whole is greater than the part.** Theorem Z The whole of a magnitude is
greater than a part.
[See Commentary, Part 11, 3(f)]

4. POSTULATES, COMMON NOTIONS AND AXIOMS

“Aristotle says that every demonstrative science must start from indemonstrable principles:
otherwise the steps of demonstration would be endless. Of these indemonstrable principles
some are
(a) common to all sciences [the axioms]
(b) particular or peculiar to the particular science.”
Sir T. L. Heath, The Thirteen Books of Euclid’s Elements.

The evidence is that Euclid used ‘common notions’ in the same way that Aristotle used
‘axioms’; Heath points out that Aristotle even describes axioms as ‘common notions’ at one
point.

This suggests that Euclid’s ‘postulates’ come under the category (b) above, which is in
accordance with what seems to be the generally accepted view these days, that the postulates
refer to statements granted relating to space.

* This is a statement of the method of superposition. Today, equality of figures would be referred to as congruence of
figures.

*% This needs to be related to magnitudes, otherwise exceptions can be found. A well-known one is that 14+2+3+4+.... 1s
not greater than 2+4+6+8+.... The two series can be put into one-to-one correspondence, showing that they contain the

same number of terms.
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5. EUCLID’S STARTING POINT SUMMARIZED

Euclid begins with what is presumably intended to be a résumé of what is known or granted

or proposed at the outset. This provides the base from which the study is developed.

First, there are definitions proposed for parts of figures, and for the figures themselves.

Then follow statements of certain things which are granted or assumed, those concerning
figures being called ‘postulates’ (things which are postulated), and those of a more general
nature being called ‘common notions’ (notions we already have, and which are used in the
study). These form a base, from which the sequence of propositions unfolds, and on which the

latter rest.

There are, in addition, certain unstated assumptions, such as that the rules of logic are

available — or, at the very least, that valid reasoning can be recognized.

PART IV MOVEMENT IN GEOMETRY

1. THE WAYS IN WHICH MOVEMENT OCCURS IN GEOMETRY FOR AN
ORAL TRADITION.

(1) Lengths and angles may be rotated or translated without change.

(2) Drawing a line entails movement of the pen.
The first of these comes under the Postulate, and the second is considered later.

2. WHY MOVEMENT IS INCORPORATED INTO THE STUDY

(1) The criterion of congruence, Prop. Al, is crucial to the whole study, and it rests on

Provision 4 (the Postulate).

(2) Provision 4 serves in place of Euclid’s parallel postulate.
If the latter is not to be used some alternative is needed. Over the centuries numerous

alternatives were tried. Eventually it was found that it could be replaced by alternatives which

contradicted it — and so non-Euclidean geometry was born.
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Here, Provision 4 is used to show that intersecting straight lines make unequal corresponding

angles with a transversal, and vice-versa. Hence the theorems on parallels.

(3) Provision 4 permits the measurement of angles by rotation.
Addition of adjacent angles is given in Def. 27. But by Provision 4:

(i) angles can be measured by rotation, and

(ii) angles are not changed on being moved from one place to another. Therefore non-
adjacent angles can be summed by rotation, as is done in summing the angles of a triangle

[Prop. B17]. This, incidentally offers another way of establishing the theorems on parallels.

(4) Note also that Euclid is unable to avoid including movement in his system, although he
does so as surreptitiously as possible, placing the statement of the method of superposition
amongst his Common Notions. If it is the case that movement cannot be avoided, why not

include it openly? As the present study shows, doing so is highly productive.

3. AN ANCIENT AND A MODERN OBJECTION TO THE INCLUSION OF
MOTION IN GEOMETRY

First, to the Pythagoreans, any hint of movement or change in geometry was anathema. In
their view geometry dealt with a perfect world: changeless, eternally real. These were

important considerations in Euclid’s day.

Secondly, in modern times attention has focused on another reason for objecting to the
introduction of motion into geometry. And that is the possibility that movement changes
properties such as length. The advent of non-Euclidean geometry increased awareness of this
possibility, and relativity theory further enhanced it. For one of the characteristics of its

geometry is that movement does affect our judgement of lengths.
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4. OBJECTIONS ANSWERED

FIRST OBJECTION

It can be argued that there is no need to deal with this one, since it belongs to an ancient and
outmoded way of thinking. And indeed, the decision has been taken here not to be inhibited
by it. This suffices as an answer. However, one relevant aspect of the world-view of those
times is discussed shortly, in Section 5: it provides the context, both for this first objection to

movement in geometry, and for the formulation of the Elements.

SECOND OBJECTION

(1) Role of the Postulate

Agreed, it is possible that movement changes such things as lengths and angles. However, it is
also possible that movement does not change them, and it is this second possibility which is

explored here.

For different systems of geometry are possible, having different formulations. It is for us to
choose a formulation, and the choice made here is of one satisfying the Postulate. That is, the

system formulated is one which is unaffected by movement.

(11) Stated and Unstated assumptions
If assumptions or agreements are stated they become part of the formulation: it gives them
status. Unstated agreements, by contrast, creep in by the back door. They may be more or less

acceptable but they have not been stated as part of the set-up.

The objection that motion might change length (or other magnitudes) carries weight as an
objection to an unstated assumption. Here, however, motion has been incorporated in the set-
up in the form of the Postulate: it is a stated assumption. In this way the consequence is

explored of supposing that movement does not change magnitudes.
In contrast, if motion is included as an unstated assumption, the objection holds, that motion

might change length etc., and that we are not entitled simply to assume that it does not. This

objection can be levelled against Euclid’s use of the method of superposition.
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5. A FURTHER OBJECTION AND HOW IT IS ANSWERED
Bertrand Russell raises an objection to Euclid’s method of superposition which is relevant also

to Provision 4. He argues that motion is only possible for bodies, not space:

“The motion of a point of space is a phantom directly contradictory to the law of identity: it is
the supposition that a given point can be now one point and now another. Hence motion in the

ordinary sense is only possible to matter not to space.” [The Principles of Mathematics]

If it is not acceptable to speak of moving points, on the same grounds it is not acceptable to
speak of moving lines — which would mean that a line is now this line and now that one. And
the same objection applies to a moving magnitude: now it is this magnitude, now another one.

It seems that the argument undermines the Postulate, which uses moving magnitudes.

To answer this, let us take a fresh look at where our ideas of rest and motion arise. Moving
and stationary are abstractions from our experience, e.g. of walking about on the surface of

the earth, and moving on it or on the sea, in vessels and vehicles.

Abstraction of ideas is natural to us, and essential in the use of language. For example, a flat
portion of the earth, and flat surfaces on buildings and furniture, have something in common.

From this we get the idea of a plane.

Our experience of movement can lead us to the idea that movement is relative. Travel in a boat
or on a sledge or in a car gives us experience of a moving frame of reference, within which
things can be still. But because the earth is so much more steady and reliable as a frame of
reference, as well as being on a larger scale, there is a tendency to extrapolate, and consider

that one reference-frame is stationary, and others are moving relative to it.
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When Euclid was formulating the Elements, prevailing opinion was that the earth was
stationary, and that the sun and moon and stars moved relatively to it. In this context an
absolute distinction between motion and rest makes sense. Euclid would not have needed to
mention this background to his studies, because it would have been widely understood. In
consequence, the assumption that a plane is granted is not mentioned by Euclid. Nor, so far as
I am aware, does it seem to have occurred to commentators to mention it subsequently.

Something everyone understands can easily not be mentioned.*

Nor does Euclid mention motion, yet he provides for it. It is there but not fully acknowledged,
a sort of halfway house between a stated and an unstated assumption. His Common Notion 4
contains a statement of the method of superposition, omitting acknowledgement that
movement is involved. The latter is something tolerated because it is thought to be necessary,

but not stated because the official view of the Pythagoreans bars motion from geometry.

In consequence of the lack of acknowledgement that a plane is granted, or that movement is
grudgingly admitted into Euclid’s system, when Bertrand Russell discusses Euclid’s method of
superposition he does not question the assumptions about rest and movement underlying
Euclid’s approach. For it is implicit that rest is absolute, and movement is relative to that.

It is of interest to us then, to go back to our experience of the world, from which ideas about
movement originate. And there, in experience, is to be found the principle that motion is
relative. If I am moving relatively to you, then conversely you are moving relatively to me.
The notion of absolute rest made sense when the earth was thought to be at the centre of the
universe, but not now.** Replacing the idea of absolute rest by the principle that all motion is

relative, rest is to be found in any reference-frame.

Re-examining Russell’s argument in this light is instructive. The objection he raises to
‘moving’ bodies applies equally to the ‘stationary’ system. Has he come up with an argument
to show that any frame of reference is impossible, even a ‘stationary’ one?

To repeat, if there are difficulties with associating a reference-frame with a ‘moving’ body, the
same difficulties apply to associating one with a ‘stationary’ body. But this is a process of

* This is an interesting thing about such common assumptions. They have to be inferred because no-one mentions them.
Yet they are an important element in the thinking of the time.
*# Copernicus, placing the sun at the centre instead, can be seen to have related absolute rest to the sun, removing the

former from immediate experience. In retrospect, this was a step towards abandonment of the very notion of absolute rest.
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abstraction from experience, which involves looking to an ideal, and for this we look beyond
the difficulties.® The abstraction is a sort of limiting process. In selecting a reference-frame
for earth we do not go through the sort of difficulties Russell mentions, simply because our
minds reach beyond them, in formulating the ideal of a reference-frame. It is true however,
that on examining our abstractions later, we may find that there are difficulties associated with

them.

And here also is the answer to another question: what is meant by a ‘moving’ magnitude? The
answer is that it is a magnitude which is at rest in some ‘moving’ reference-frame.**
Underlying Provision 4 is the the principle that motion is relative. Unlike Euclid’s Elements,

this system does not embody the notion that there is an absolute state of rest.

6. THE OBJECTIONS AND EUCLID’S ELEMENTS

It is of interest to explore further how the two objections of Section 4 apply to Euclid’s
Elements, partly by way of contrast and partly because of the important role played by the

Elements in the development of the Western intellectual tradition.

Continuing with the second objection, note that the method of superposition may well have
been a standard method in Euclid’s day, which might be one reason why he gave it as a
Common Notion but did not otherwise discuss it. However, he used it as little as possible —
and has been criticized for not using it more, since it would have meant less work. This under-
use of the method suggests that he disliked it, movement being implied. Furthermore, he very
carefully avoids direct transmission of length using compasses (other than in drawing a circle)

— a scruple which also suggests he did not wish to include movement if he could avoid it.

Let us now consider the influence on Euclid of the first objection, the Pythagorean view that

geometry deals with changeless reality, and that change or movement has no part in it.

* It seems that what happens is that abstractions arise from our experience of the world, and later we discover that there
are problems associated with them.

#* It can be argued that this makes the earlier comments out of date — the strictures on speaking about ‘moving poinis” and
‘moving lines’. Yet these serve as useful reminders not to take these things for granted. A ‘moving point’is in fact
stationery, on some body or in some reference-frame. That is what is important about relating it to its appropriate

reference-body or reference-frame.
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Debarring change from geometry meant that an angle could not be defined as a change of any
kind, let alone a change in direction. Even the concept of direction was suspect, a direction

being, from somewhere and fo somewhere else.

Hence the definition of angle used here, and the Postulate, were both out of bounds to Euclid.

He was therefore obliged to find other ways of proceeding.

As the present text shows, this was at the cost of brevity — not that brevity seems to have been
of especial importance to Euclid. It appears that his interest was more in providing a chain of
reasoning proceeding from first principles to the construction and properties of the five

Platonic solids.

To conclude the present discussion, Pythagorean ideas had considerable merits. They were of
great beauty and charm; they inspired thinkers, and provided a framework within which to
proceed; yet they did constrict thought. Ultimately they were superseded; yet they left behind
a legacy, not least through Euclid’s Elements.

7. PROOF OF THE METHOD OF SUPERPOSITION AS USED BY EUCLID

A triangle is bounded by three segments. Given that segments are unchanged by motion, does

it follow that triangles are unchanged by motion?

Not necessarily; for conceivably the angles of the triangle may be changed; also, the area of
the triangle may be changed. But being given the Postulate, that all these magnitudes are
unchanged by motion, there is nothing to distinguish the triangle in different positions or
different states of motion. That is, the triangle is congruent with itself, whatever its position or

state of motion.
Thus the Postulate can be used to demonstrate Euclid’s method of superposition as applied to
triangles — which is all he uses it for. But it is more effective to use the Postulate to

demonstrate Proposition A1, that identically constructed figures are congruent.

To complete this Section one thing remains to be discussed — the second of the items on the

opening list, of ways in which movement enters this study of geometry.
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8. THE MOVEMENT OF THE PEN IN DRAWING A LINE

Why define a line as the trace of a point on a moving body?
Because: (i)‘this definition is in accordance with the way a line is drawn, using a pen, and
(i1) it follows from this definition that a line is one point thick.
Lines are elements of a surface (Definition 21), but they are not visible until drawn. Thus,
drawing a line is making visible something that is already there. But if so, how can drawing a

line change what is there?

Yet a counter-argument is, how do we know which line we are revealing by drawing one? Is
the line being drawn the one we think it is? This is where the provision of drawing
instruments to guide the pen comes in. Being granted a straight edge, we are granted the

straightness of lines drawn with its aid. We know that we are drawing a segment.

Here we are beginning to stray into the next topic, the validity of figures. What comes now

prepares the way.

TWO BASIC QUESTIONS ASKED BY THE ANCIENTS

These are included here because they help to set the scene for the next topic. In ancient Greek
thought two questions which might be asked of something were:
(1) does it exist ?
(i1) what is its nature, i.e., what are its characteristics?
In geometry this led to propositions being of two types:
the problem, concerned with establishing the existence of a figure, which meant showing it
could be constructed, and
the theorem, concerned with stating something about a figure.
Proclus puts it in this way, in his commentary on Euclid’s ‘Elements’:
“Hence too Posidonius defined the one (the problem) as a
proposition in which it is inquired whether a thing exists or
not, the other (the theorem) as a proposition in which it is

inquired what (a thing) is or of what nature.”
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PART V THE VALID USE OF FIGURES

1. PREAMBLE

Examples exist of fallacious arguments, yet we are not to conclude from this that reasoning
cannot be trusted. After all, rules are available governing valid reasoning — the rules of logic.
Likewise, in geometry there are fallacious proofs of theorems using figures which are not
what they are supposed to be. Here too, it does not follow that figures cannot be trusted.
Indeed, the study of geometry rests on the premises that figures possess very definite and
reliable properties, and that we can know them. If that is so, there will be rules governing

their valid use, even if we do not know what they are.

Some of these rules have been known since ancient Greek times. But in the nineteenth century
questions were asked about the use of figures which culminated in systems of geometry being

developed which withdrew from using figures altogether.

That is one way of setting about dealing with problems arising in using figures. Another is:
Firstly: to acknowledge that rules governing the valid use of figures exist
(for if not, the above-mentioned premises on which the study of geometry rests cannot
both be valid).
Secondly: to note those rules which are known.

Thirdly: to seek to formulate those of the rules which appear to have eluded us so far.

The issue is relevant here, for the present study uses figures in proofs. How do we know that

they are valid?

We begin with clear cut rules, known and put into practice at least since Euclid’s time. Then
follow less clear cut rules, put into practice to some extent from Euclid onwards, and
tentatively formulated here. Finally, some of the questions raised by nineteenth century
geometers are considered briefly. Noting what appears to have been their chief concern

suggests an addition to our proposed list of rules.
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2. RULES GOVERNING THE VALIDITY OF FIGURES

1. The validity of each figure is established by giving a construction and proving that the
figure so constructed satisfies its definition or description.

2. Different cases of the figure need to be acknowledged, and proofs given to cover each case.

Between them these rules contain a statement of what a problem of construction sets out to
achieve. For example, to demonstrate that a particular figure is a square, we show that it is so
constructed as to satisfy the definition of a square. They cover more than this, for they apply
to the figures used in theorems, not just problems. Sometimes we are dealing with figures
which have been defined, sometimes they are given by description. These need to be

considered separately, in applying them to the present text.

3. DEFINED FIGURES
Being given a definition of a figure does not establish that it exists. Leibnitz gives the example

of a ten-faced regular solid, which can be defined but not constructed: no such solid exists.

There are a number of defined figures whose existence needs to be established by giving a
construction and proving it. These include a point, segment, circle, triangle, quadrilateral,
rectangle etc. (Bear in mind that, as defined here, any configuration of lines and/or points in a

plane constitutes a figure).

The provision of a straight edge and compasses (and a pen) establishes that segments and
circles can be drawn. Again, by definition, points (and lines) are elements of a surface.

Therefore, granting a plane surface establishes that points exist.

For other figures a construction is required. The following table sets out the requirements in a

few simple cases.

* Likewise, lines are granted to exist; drawing one merely reveals it. But if all lines and points already exist in the plane,

so do all figures; drawing them reveals them.
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FIGURE HOW EXISTENCE IS ESTABLISHED

1. Point Granted [Provision 2]

2. Segment Provision of a straight edge [Provision 2]
3. Circle Provision of compasses [Provision 2]

4. Triangle From a common point, draw two segments,

not in the same straight line. Join their free

ends. This figure satisfies the definition.

5. Isosceles triangle Drawing a circle, use two of its radii as two
sides of a triangle, which is then an isosceles

triangle.

6. Cyclic-quadrilateral Place four points on a circle. Join neighbouring

points to form a quadrilateral on the circle

There follow a number of points concerning the above matters.

a) The reader may be interested in what Aristotle has to say concerning this issue:
“....we have to assume the existence of a few primary things which
are defined, viz., points and lines only; the existence of everything
else, e.g. the various figures made up of these, as triangles,
squares, tangents and their properties needs to be proved.”

[Posterior Analytics |

b) Some figures cannot be drawn fully: e.g. a straight line, and a pair of parallel straight

lines. In these cases we have to be content with part of the figure.

¢) Again, some figures cannot be drawn directly from the definition. Examples are parallels
(straight lines which never meet) and a tangent to a circle. That a tangent meets a circle once

does not suffice to draw it; that it is perpendicular to a diameter does.

d) There is also the question, since magnitudes are parts of figures, does their existence need
to be established in the same way? Is the existence of angles demonstrated by their existence

in figures such as triangles?
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e) In the present book, the existence of figures is not systematically established first, before
using them. It seems to be a better idea to defer the issue, and then mentally insert the relevant

steps, where needed, on going through the material again.

f) Finally, how does Euclid deal with this issue? Aristotle’s thoughts on it would have been
available to him. Yet this is not the only reason for believing he was aware of the matter. As
Sir T. L. Heath points out, not until he has given a construction of a square does he use the
square in theorems. However, with more elementary figures, such as triangles, including
isosceles triangles, he is less rigorous, assuming their existence instead of demonstrating it

first — although he does start Book I with the construction of an equilateral triangle.
4. FIGURES GIVEN BY DESCRIPTION

Theorems about figures need to refer to the relevant figure in some way. Often this is done by

describing it briefly.

Example, Proposition DI Theorem. A diameter of a circle subtends a right angle on the

circumference:

Fig 42

As with defined figures, the requirements for described figures are that:
(i) a construction be given, and

(ii) the figure so constructed accords with its description.
These are often the first two steps of a proof. They can be observed in D1 Theorem. Firstly,

the construction draws on B22 Problem, the construction of a rectangle. Secondly, observation

shows that Figure 29 satisfies its description.

86



COMMENTARY: PART V

Sometimes the description of a figure consists of the steps by which it is constructed. This
occurs, for example, where further construction is required for the proof. To establish that the
figure is what it is said to be, in such a case, it suffices to carry out the steps of the

construction.

S. A FURTHER ISSUE: THE VALID USE OF FIGURES

As well as the requirement that figures are valid in themselves, there is a need to discuss them.
This brings in the use of language: words are needed to refer to figures. We are dealing with
the meeting of two systems, that of figures and that of language. Rules are available governing
the valid use of language (the rules of logic), and likewise rules are available governing the
validity of figures. What is needed now is to formulate how figures and language relate to one
another. If we succeed in formulating that perhaps we shall have achieved our objective: a

formulation of rules governing the valid use of figures.

First, we need a clear statement of the definitions applying to all geometric terms (words
relating to figures). For this is where the two systems meet. In the present book, for example,
many of these geometric terms are redefined at the beginning of the text, and all the others

used — being common or everyday words — rest on dictionary definitions.

A little historical background helps to lead up to the next point. In the nineteenth century, in
the wake of the emergence of non-Euclidean geometries, there was a questioning of traditional
assumptions in geometry. I believe it was the Italian school of geometers who suggested that it
is desirable not just to assume that we know what is meant by words such as ‘between’ and
‘inside’, but to furnish mathematical definitions for them. However, as was pointed out earlier
in the Commentary, it appears we cannot redefine all geometric terms without circularity, so

that some selection among them is required (if circularity is to be avoided).
Such matters can be approached in more than one way, but we do need to be clear which

approach we are following. That is to say, figures are being considered in the context of a

system, or approach. What that approach is needs to be stated.
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Furthermore, those aspects of the approach which have a bearing on the definitions in use
need to be stated.

Of these, the chief is surely the principle followed in selecting words for redefinition. Such a
principle gives a sense of order to the study, and aids in appreciating the system as a whole —
which makes for its intelligent use. Without such a principle there is a risk of the study
appearing to be haphazard — not a quality to be welcomed in what purports to be a systematic
study of geometry. As already stated, in the present book, the principle is that words in
common use need not be redefined, but others are.

It is possible that it is also relevant to state any assumptions or agreements concerning the use
of language. For any restrictions or conditions on the language may have a bearing on how it
relates to figures. And if not, it is helpful to be clear that they do not. In the present text, the
relevant points are that a language is granted, and that dictionary definitions apply until
replaced.

To summarize, the rules suggested so far governing the valid use of figures are these:
1. That a figure is valid in itself needs to be ensured, and
2. different cases of the figure need to be taken into account.
3. The definitions of terms used relating to figures need to be made available.

4. The criterion or principle by which words are selected for redefinition needs to be
clear.

5. It needs to be clear which system or approach is being followed (to put the study in
context).

6. Any other features of the system which have or may have a bearing on terms used
relating to figures need to be stated: e.g. any assumptions or agreements concerning the
use of language.

But this list of rules is not complete, as the following considerations show. Euclid has been
accused of excessive reliance on figures. A figure used in a proof is intended to represent a
general case. For example, ‘the angle subtended by a chord on the circumference’ is not
limited to an angle subtended in one place, although the figure only shows one of the
possibilities. An attempt to take this into account in proofs is made by considering different
cases. The latter arise, especially, where some further construction is added to the basic figure
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[for example, see Proposition D2]. Yet the balance between what can safely be taken from the
figure and what needs to be proved is not always clear cut. Some of Euclid’s decisions, in this
respect, have been challenged.
Along with this consideration, there is another, not unrelated one. Euclid does not give
definitions for terms such as ‘between’ and ‘inside’, which describe geometric relations. It can
be argued that this is unsatisfactory. What these issues have in common is their topological
nature, it seems. This suggests that what is needed is an additional rule:
unstated assumptions of a topological nature are unacceptable in proofs.

For stated assumptions are taken into account in proofs. It is the unstated ones which need to
be watched. If this additional rule is found to hold good, and to be of practical use, we then
have the following rules:
Rules governing the valid use of figures

1. Each figure needs to satisfy its definition or description.

2. The different cases of the figure need to be taken into account in proofs.

3. Unstated topological assumptions are not acceptable in a proof.

4. The list of redefinitions of terms related to figures needs to be given.

5. The criterion or pattern by which terms are selected for redefinition needs to be stated.

6. The system or approach being followed needs to be stated.

7. Any assumptions or agreements made concerning the use of language need to be stated.
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This is, of course, a provisional list — possibly no more than a stage in the search for the
appropriate rules.

The third of these proposed rules looks as though it could lead to considerable further
investigation, although this is not being followed up here. For example, questions which come
to mind include:

What forms can statements of topological assumptions take?

Can a figure be a statement of topological assumptions?

If so, under what circumstances?

In conclusion, this investigation is far from complete. Yet enough has been said to make the
point that not only are such rules needed, but we have an idea of what some of them are.

6. GEOMETRY WITHOUT FIGURES

It must be possible to replace in all geometric statements the words

point, line, plane, by table, chair, mug. D. Hilbert

In his book, Foundations of Geometry, (first edition 1899), Hilbert formulated a system of
geometry in which three terms were left totally undefined, that is, not even covered by
dictionary definitions. Among other considerations, this was one way of resolving the

problems encountered on attempting to define all terms related to figures.

In addition, he set out to formulate our intuitive understanding of figures in a set of axioms.
But if the essential information in figures can be axiomatized, do we really need the figures
themselves? Hilbert took the bold step of dispensing with them. And since he left ‘point’,
‘line’ and ‘plane’ as undefined terms, how could figures be used anyway?

Thus two leading characteristics of Hilbert’s formulation are:

(1) ‘Point’, ‘line’ and ‘plane’ are at no stage defined.

(2) A set of axioms is used which makes it possible to dispense with figures.
Because of (1), axioms frequently serve in place of definitions. For what sense are we to make
of a definition which depends on an undefined term? But an axiom, used instead, may tell us
some useful feature of the system — much as a definition may refer to some distinguishing
feature.
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In consequence, the approach uses a goodly number of axioms, but few definitions. This

contrasts with the present book, which uses definitions freely, but few provisions.

The system is developed in such a way that although in principle figures are not relied upon,
they can always be used by way of illustration. To do so, ‘point” ‘(straight) line” and ‘plane’
are given their ordinary meanings. But that such figures are used validly does need to be
established. The rules governing the valid use of figures have still to be satisfied. And this,

even in a system which seeks to free itself from dependence upon figures!

Hilbert’s system encountered opposition at first, but gradually gained acceptance. And there
have been a number of formulations on much the same lines since. In consequence, there is a

modern approach to geometry in which the role of figures is pushed into the background.

Along with this development, expressions of distrust in figures are not uncommon. This is
odd, because essentially, each of the various branches of geometry is a study of the properties

of figures (if not, what right has it to be considered a branch of geometry?)

If figures themselves cannot be trusted, what trust can be placed in a study of their properties?

As an example, here is an extract from what C. S. Ogilvey has to say about figures (diagrams)
in the introduction to his book, Excursions in Geometry:

One must guard against thinking, “The diagram proves it.” Appearances

are often misleading: diagrams are useful only as an aid to picturing things

that can (at least theoretically) be stated and proved without them. Yet

they are so useful in clarifying our thinking that only the most abstract

purists attempt to dispense with them entirely.

This distrust of figures points to something being unsatisfactory. It seems the problem is lack

of general acceptance that reasoning with figures can be valid if pursued lawfully.

Even if this is accepted in principle, there is still a need to state the relevant rules. The

formulation suggested here is an initial attempt to do so, presented for discussion.
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SUMMARY AND CONCLUSIONS

A sequence of propositions has been provided, establishing the elementary properties of a

circle. It is based on four provisions.

Euclid’s five Common Notions and five Postulates are shown to have approximate equivalents

here — sometimes close ones, sometimes meeting the need in a different way.

Evidently what is presented here is part of a system, which is ripe for further development.

Chief innovations

1) Movement has been objected to in geometry in both ancient and modern times. Yet it lies
at the centre of this system, embodied in a postulate. Being a stated assumption the drawbacks

of unstated assumptions (of motion) do not apply.

2) A need is recognized: to state the assumptions knowingly made. This results in the concept
of Provisions, things provided at the outset, including any axioms or postulates, the language

used etc.

3) The need for rules governing the valid use of figures is pointed out, and the process of

formulating such rules is begun.

Other points

1) The language is central to an oral tradition. It is developed in such a way as to provide for

studies such as that of geometry.

2) One of the Provisions being language, proofs can rest on the meaning of words, thereby

reducing the number of axioms needed.

3) Grounds are shown for believing that it is not possible to redefine all terms relating to
figures without circularity. Therefore another criterion is selected for choosing words to be
defined: words needed in the study are redefined, except that this is optional for words in

cominornmn use.
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4) The Postulate rests on the principle that motion is relative: each ‘moving’ magnitude is at

rest in some reference-frame.

5) Itis shown that in order to understand speech we sometimes need to draw on the ability to
recognize valid reasoning, and that this occurs more widely than is commonly recognized. In

consequence, Provision 3 is seen to be part, albeit a special part, of Provision 1.

To conclude, having finished this book I am left with a sense of potential. It is as though,

having become aware of a gold-mine, what has been done but scratches the surface.

Questions

1. What is the equivalent of a dictionary in an oral tradition?

2. In what ways is mathematics notation of use in an oral tradition?

3. Can a figure be a statement of topological assumptions? If so, in what way?

4. It has been noted (in the Preliminaries) that concepts have implications. How do we know
that the concepts represented by words in common use are consistent with one another?

This is not limited to the concepts of geometry: it has a wider application. Furthermore the
question can usefully be related to the whole of language, not just words in common use. But
in the present system the latter are especially important because they constitute a core of

words on which the study is based.

Questions and some answers

Question 1

Is it more apt to speak of a figure in a surface or a figure on a surface?
Answer

Both are equally acceptable. The nature of a surface is such that a figure lying in it also lies on

it, and vice-versa.

93



Question 2

Are different words needed for congruence and equality?

Today we speak of congruence with reference to the sameness of figures, and of equality
when dealing with numbers or algebraic expressions. The ancient Greeks did not draw this
distinction. The advantages and drawbacks of the ancient and modern approaches to this might

make a good topic for discussion.

Question 3

What is geometry?

Answer

Geometry is the study of properties of figures. Euclidean geometry is a study of magnitudes in
figures. It examines, for example, the equality or lack of it, of lengths and of angles and of

other magnitudes.
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APPLICATION OF THE SIXTEEN SUTRAS TO THE
PRESENT SYSTEM OF GEOMETRY

Tirthaji’s sixteen sutras are like patterns or themes. Nine are used in the following study. But
first, let us consider, what would be a good procedure for investigating the application of the

sixteen sutras here?

Perhaps the ideal is to begin by seeking to find out how people thought in those times before
writing became established. For instance, if we were studying aspects of 14th century French
thought, a key question would be, how did they think? And we would do well to study original
writings of the times, in the original language, to find out what factors influenced them. In the
present case, the earliest writings would surely have coincided with and reflected a continuing
oral tradition, even though the latter was by then doubtless in decline. Indeed, it may be
surmised that only in its decline would the thought of writing down the oral tradition have

been taken seriously, this being contrary to its spirit.

A further consideration is that within a given culture there is variation: for instance, each
academic discipline can be expected to have its own ways of thinking. But there is little or no
information on the mathematics of those times. Complicating the matter, eastern writings have

not been documented anything like as fully as western ones.

Tirthaji must have followed something like this approach himself, and it may well be feasible
for others to do the same, although it is not straightforward. However, there is another and
very different way of tackling the issue. Suppose we assume that Tirthaji is correct, and that
mathematics in its entirety comes under the sixteen sutras he has formulated. The job then
becomes to make sense of this statement, in the context of the present system of geometry. In
short, the task is to find how the sutras apply to the present material, the assumption being that
they do. That is the approach being taken here, and in following it, it helps to be willing to be
flexible in interpreting and using the sutras — willing to stretch the meanings a little, willing to
consider the possibility that in places a single translation of a sutra from the Sanskrit may be
insufficient, even though we do have Tirthaji’s own translation for most of them.

NOTE: The reader is advised to have a book-mark handy for easy access to the relevant

Proposition (in Parts A- D).
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Applying the sutras

HYPOTHESIS: the sutras apply to each and every part of mathematics.

PART A
Al Theorem
SUTRA: Paravartya yojayet, TRANSPOSE AND APPLY (Tirthaji’s translation).
The sutra may be slipped into a sentence describing (or restating) the Theorem, thus:
transpose the place, and apply the same rules of construction, and the result is the same. The
same sutra also applies to Euclid’s method of superposition, which is his basic method for

testing congruence (see Commentary).

A2 Theorem, A3 Theorem and A4 Theorem

These use the same sutra as A1 Theorem.

AS Theorem and A6 Theorem

SUTRA: Sankalanavyavakalanabhyam, BY ADDITION AND SUBTRACTION (Tirthaji’s
translation).

This pair of theorems may be jointly formulated, incorporating the sutra: both by addition of
equals, as in A5 Theorem, and by subtraction of equals, as in A6 Theorem, the results are

equal.

A7 Theorem

SUTRA: Shunyam Samyasamuccaye, IF THE SAMUCCAYE IS THE SAME, THAT
SAMUCCAYE IS ZERO (Tirthaji’s translation).

This English translation can be shortened:

IF THE SAMUCCAYE IS THE SAME IT IS ZERO.

We will not be misled if we regard ‘samuccaye’ as referring to ‘something’, the interest being
in something which remains the same. ‘Samuccaye’ can refer to a single term, such as a
magnitude, or to some combination of terms (see ‘Note on Samuccaye’ below). On page 107
of Vedic Mathematics Tirthaji gives an example in which ‘the samuccaye’ is the same but
something else is zero. This stretches his own translation beyond normal usage of the English

— and it suggests alternative translations:
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IF THE SAMUCCAYE IS THE SAME THERE IS THAT WHICH IS ZERO, OR,
IF THE SAMUCCAYE IS THE SAME THERE IS A ZERO.

Turning now to A7 Theorem, having no parts a point is the same throughout itself — and the

zero 1s its magnitude.

NOTE ON SAMUCCAYE
For the various meanings that Tirthaji assigns to ‘samuccaye’ see Vedic Mathematics, pages
107 et seq. Two Sanskrit — English dictionaries give:

Samuccaye = aggregate, accumulation, collection, assemblage, multitude, totality,

aggregate. (Monier — Williams, page 1165 column 2)
and
Sam-uk-kaya = heaping up together, mass, multitude, totality, aggregate.
(McDonnell, page 338, column 2).
A8 Theorem

SUTRA: Shunyam samyasamuccaye, IF THE SAMUCCAYE IS THE SAME THERE IS A
ZERO.

Here, the line is the same throughout itself, and the zero is its thickness.

A8 Corollary
SUTRA 1: IF THE SAMUCCAYE IS THE SAME THERE IS A ZERO.

Two intersecting lines coincide (are the same) at a single point, which has zero magnitude.

SUTRA 2: Sopantyadvamantyam, THE ULTIMATE AND TWICE THE PENULTIMATE
(Tirthaji’s translation).

The word ‘penultimate’ comes from the Latin, paene, meaning ‘almost’ and ultimus, meaning
‘last’. Noting this, and that Cassell’s dictionary gives ‘penultimate’ as meaning ‘next to the
last’, the following alternative translation for the sutra is proposed:

THE ULTIMATE AND TWO PENULTIMATES.
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For it is not uncommon for there to be more than one term next to the ultimate — ‘the ultimate’
being whatever is considered to be the last or ultimate term, or the objective or goal currently
aimed at. To some extent, use of the terms “ultimate’ and ‘penultimate’ may just be a

convenient convention for the purpose in hand.

Variations on this alternative translation include:

THE ULTIMATE AND THE PENULTIMATE PAIR, and:

THE ULTIMATE AND DOUBLE PENULTIMATE.

This last form can be interpreted as incorporating both meanings — the one given by Tirthaji

and the proposed alternative.

Relating this discussion to A8 Corollary, the two lines can be seen as the pair of penultimates

which lead to the goal, or ultimate — i.e. the point of intersection.

A9 Theorem and A10 Theorem

SUTRA: THE ULTIMATE AND TWO PENULTIMATES

One type of application of this sutra is where two like things or qualities come together,
yielding something else. In A8 Corollary, two (intersecting) lines yield a point. And that two
points specify a straight line (Definition 12) is the key to A9 Theorem and its Corollary and
A10 Theorem. The sutra draws attention to a pattern that these Theorems and A8 Corollary

have in common — one of interest in topology.

All Theorem

This is discussed after Part D, along with the definition of magnitude.

A12 Theorem

SUTRA: Shunyam samyasamuccaye, [F THE SAMUCCAYE IS THE SAME THERE IS
THAT WHICH IS ZERO.

In this case it seems that ‘the samuccaye’ refers to the plane and the straight line — or perhaps
to what they have in common — and the zero to the extent that the straight line departs from the

plane.
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Al3 Theorem and Al14 Corollary

SUTRA: Sopantyadvayamantyam, THE ULTIMATE AND TWO PENULTIMATES.
The ultimate (arc, Al4; segment, A15) lies within the circle, and the two penultimates
(intersections) bound it.

That 1s, part of one figure lies inside the other, and it has two boundaries.

Al14 Theorem
SUTRA: IF THE SAMUCCAYE IS THE SAME THERE IS THAT WHICH IS ZERO.
If the samuccaye (insideness) is the same there is a zero (circle or other enclosing figure).

PART B
B1 Theorem

This is discussed along with the definition of magnitude, after Part D.

B2 Theorem
SUTRA: Paravartya yojayet, TRANSPOSE AND APPLY.
Flip the angle over and it fits its unflipped self (or apply A1 Theorem).

From here on a less formal presentation is sometimes used.

B3 Theorem
SUTRA: BY ADDITION AND SUBTRACTION
This Theorem and its converse come under the statement:

the quality of an angle is unchanged by addition, and it is also unchanged by subtraction.

Note that, except that it applies to angles, this has some resemblance to the definition of
magnitude.

B4 Theorem

Similar remarks apply here, too.

B5 Problem
SUTRA 1: TRANSPOSE AND APPLY.

For the construction is based on A2 Theorem, which comes under this sutra.
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However, symmetry is achieved by doubling up, which hints that we can usefully look for the
sutra THE ULTIMATE AND TWO PENULTIMATES. For Example, the ultimate (a
perpendicular, this being the objective) is specified by the intersection of fwo penultimates

(two circles).

A third sutra which comes in is: IF THE SAMUCCAYE IS THE SAME THERE IS A ZERO.
There is the phrase, ‘to point the way’. It acknowledges that a point, which has zero
magnitude, can be used to specify a direction from another point.

Given point P, a second point P is sought such that the construction is the same on either side

of line PP’. So we have here that which is zero, showing the presence of the sutra.

B6 Theorem
SUTRA: THE ULTIMATE AND THE PAIR OF PENULTIMATES.
The Theorem can be formulated thus: the ultimate (complete turn), and the pair of

penultimates (half turns) taken together, are equal.

B7 Theorem

This is based on the Postulate. See ‘Provision 4 and the sutras’, page 111.

B8 Theorem
SUTRA: THE ULTIMATE AND THE PENULTIMATE PAIR.
See B6 Theorem and B5 Corollary.

B8 Corollary
SUTRA: THE ULTIMATE AND DOUBLE PENULTIMATE

The sutra is applied twice, to obtain a quadrupling.

B9 Theorem
SUTRA 1: Urdhva Tiryagbhyam, VERTICALLY AND CROSSWISE (Tirthaji’s translation).

For opposite sides are equal, both vertically and crosswise.

SUTRA 2: TRANSPOSE AND APPLY

Turn a copy of the figure upside down and it fits the original. (See second proof).
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SUTRA 3: IF THE SAMUCCAYE IS THE SAME THERE IS THAT WHICH IS ZERO

For the first proof depends on the Postulate, which comes under this sutra.

PARALLELS
B10 Theorem
SUTRA 1: THE ULTIMATE AND TWO PENULTIMATES.
The Theorem may be restated incorporating the sutra:
where a transversal cuts intersecting lines, corresponding angles between the ultimate

(common direction) and two penultimates (two different directions) are unequal.

SUTRA 2: TRANSPOSE AND APPLY
One way of showing that two angles are unequal is to show that they cannot be constructed

identically (see A2 Theorem).

B11I Theorem
SUTRA 1: THE ULTIMATE AND TWO PENULTIMATES
The Theorem may be so rephrased that it essentially incorporates the sutra:
if corresponding angles with the ultimate (transversal) are equal, the penultimate pair

of lines are parallel.

SUTRA 2: IF THE SAMUCCAYE IS THE SAME THERE IS THAT WHICH IS ZERO.
We are looking for some pair to be ‘the same’, and something which is zero. Rephrasing the
Theorem to reflect this:

if corresponding angles with the transversal are the same, the angle between the pair of

lines is zero.

This implies that these lines are parallel — a result not demonstrated here, although it readily
follows from Propositions B11 and B17, which latter could be placed before Proposition B11.

And this raises a question of general interest, concerning sutras: is it acceptable for a sutra to
refer to something which has not been proved? I suggest that the answer is, ‘Yes’: theorems

may be subject to a discipline of sequence, but there appears to be no reason why sutras should
be.
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B12 Theorem
SUTRA: THE ULTIMATE AND TWO PENULTIMATES
Being the converse of B10 Theorem the application of the sutra follows much the same lines.
Letting ‘the ultimate’ be a direction specified by the transversal, and ‘the two penultimates’ be
directions away from the latter, specified by the intersecting pair of lines, we have:

if corresponding angles between the ultimate and two penultimates are unequal,

the pair of lines intersect.

B13 Theorem
This is the converse of B11 Theorem. The evidence so far suggests that the same sutras may
well apply to theorems and their converses, and for the first sutra identified for B11 Theorem

this is straightforward enough.

SUTRA 1: THE ULTIMATE AND TWO PENULTIMATES.
Rephrasing the Theorem to incorporate the sutra:
corresponding angles with the ultimate (transversal) are equal, given that the

penultimate pair of lines are parallel.

However, the second sutra given for B11 Theorem appears to be formulated the wrong way

round for the present theorem:

SUTRA 2 (?): IF THE SAMUCCAYE IS THE SAME THERE IS THAT WHICH IS ZERO
In consequence we can choose between the following responses:

1. This sutra does not apply here.

2. The sutra does apply here, the principle being that if it applies to a theorem,

and that theorem has a converse, it applies to the latter also.

The interesting option to explore is the second one. To get this to work, it is as though we
need the converse sutra, which might be formulated as a subsutra: '

IF THERE IS THAT WHICH IS ZERO, THERE IS THAT WHICH IS THE SAME,

or,

A ZERO INDICATES THE PRESENCE OF THAT WHICH IS THE SAME.
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The zero refers to parallels here, as in B11 Theorem, so we can rephrase this subsutra:

IF THERE ARE PARALLEL LINES THERE IS THAT WHICH IS THE SAME,

or

PARALLELS INDICATE THE PRESENCE OF THAT WHICH IS THE SAME (correspond-
ing angles) — which is a restatement of B13 Theorem.

However, are we entitled to turn a sutra round and use its converse? For without that the fore-
going is invalid. The justification is that interpretation and application of the sutras is being
done in a very free way, in order to explore the underlying hypothesis, that Tirthaji’s sutras
apply throughout mathematics. And in this spirit, the suggestion is that, where a sutra can have
a converse, the latter comes under that sutra as a subsutra. In which case, it is like having a list
(of two), in which the first item represents the whole list.

Bi14 Theorem

SUTRA 1: THE ULTIMATE AND TWO PENULTIMATES.

The Theorem can be reformulated thus, to incorporate the sutra:
the ultimate (transversal) and two penultimates (parallel lines) make equal alternate
angles.

SUTRA 2: IF THE SAMUCCAYE IS THE SAME THERE IS A ZERO.

Using the converse form, as in B13 Theorem, we have:

parallel lines indicate the presence of that which is the same (alternate angles).

SUTRA 3: TRANSPOSE AND APPLY.

Rotate the figure and it fits its unrotated form.

SUTRA 4: VERTICALLY AND CROSSWISE.

)(.

Fig 43
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The vertically opposite forms are congruent (indistinguishable, above and below line ¢) and
crosswise the angles are equal. Note that the first phrase refers to what amounts to another

theorem. That is, this is a further example of two theorems being covered by one sutra.

B15 Theorem
SUTRA 1: THE ULTIMATE AND TWO PENULTIMATES.
Rephrasing the Theorem:
if alternate angles between the ultimate (transversal) and two

penultimates (straight lines) are equal, those straight lines are parallel.

SUTRA 2: IF THE SAMUCCAYE IS THE SAME THERE IS THAT WHICH IS ZERO.
That is, if alternate angles are equal, the angle between the lines intersected by the transversal

is zero, showing that the latter are parallel.

SUTRA 3: TRANSPOSE AND APPLY
Turning the figure round, the parts of the figure above and below line ¢ are congruent (Fig 43).

SUTRA 4: VERTICALLY AND CROSSWISE.
It is the same story as in B14 Theorem: vertically (above and below line ¢) the figures are con-

gruent, and crosswise the angles are equal.

TRIANGLES
B16 Problem
SUTRA: THE ULTIMATE AND TWO PENULTIMATES
The objective is the triangle; let this be ‘the ultimate’. The two circles used in the construction
are then penultimates, being potential sides (through their radii), and leading to completion of

the triangle.

B16 Corollary
The proof draws on A1 Theorem, which brings in TRANSPOSE AND APPLY.
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B17 Theorem
SUTRA: BY COMPLETION OR NON-COMPLETION.

The half turn is completed by summing the angles of the triangle.

B18 Theorem
SUTRA: BY COMPLETION OR NON-COMPLETION.
Summing the interior opposite angles does not complete the half turn, but it does complete

(equal) the exterior angle.

SUTRA 2: Yavadunam, WHATEVER THE DEFICIENCY (Tirthaji’s translation).

Fig 44
Whatever the deficiency () its complements are equal, these being 8 + vy by B17 Theorem,
and 0.

The Theorem follows
SUTRA 3: TRANSPOSE AND APPLY.
Transpose angles B and C to vertex A, using the theory of parallels. And apply the definition

of a half turn, when the result follows.

BI19 Theorem
SUTRA: TRANSPOSE AND APPLY.

Turning the triangle over, it is unchanged.
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B20 Theorem
SUTRA: THE ULTIMATE AND TWICE THE PENULTIMATE.
The theorem can be reformulated thus: the ultimate (exterior angle) and twice the penultimate

(a base angle) are equal.

The exterior angle is regarded as ‘the ultimate’, here, because it is what we are interested in.
And the penultimates are the base angles, which together (or one of them doubled) give the
ultimate. It is in this sense that the penultimates are next to the ultimate. This example shows

the freedom with which the terms ‘ultimate’ and ‘penultimate’ may be applied.

QUADRILATERALS
B21 Theorem
SUTRA: BY COMPLETION OR NON-COMPLETION.

Together, the angles form a complete turn.

B22 Problem and Corollaries (1) and (2)
SUTRA: TRANSPOSE AND APPLY

The proofs here draw on propositions Al and A2, which come under this sutra.

B23 Theorem
SUTRA 1: TRANSPOSE AND APPLY.

This seems to be the principle sutra here, since all four angles can be constructed identically.

However, other sutras are relevant, and can be unearthed by looking at the Theorems referred

to in the proof:

SUTRA 2: BY COMPLETION OR NON-COMPLETION (From B21 Theorem)

SUTRA 3: THE ULTIMATE AND TWICE THE PENULTIMATE (From B6 Theorem)

106



APPENDIX 1

Fig 45 Right angles

Take a perpendicular to a straight line, and the sutra applies: the half turn (ultimate) and two
equal angles (right angles = penultimates) are equal (Fig 45).

The same applies on the other side of the line, and one line intersecting another at right angles
does both jobs at once (Figure 46). In the process a complete turn is divided into four equal

angles, or right angles.

[l
o7

Fig 46 Two pairs of right angles

B24 Theorem
SUTRA: TRANSPOSE AND APPLY.
The equalities of sides are established using this sutra. For the proof depends on B22 Corollary

(2), which in turn depends on Al Theorem, which comes under this sutra.
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B25 Problem
Parallels are established under the sutra TRANSPOSE AND APPLY.

However, the proof depends on B15 Theorem, which brings in three other sutras.

SUTRA 2: THE ULTIMATE AND TWO PENULTIMATES
The goal is the parallelogram (the ultimate), and it is achieved by putting two congruent

triangles (the penultimates) on opposite sides of a common base.

SUTRA 3: IF THE SAMUCCAYE IS THE SAME THERE IS THAT WHICH IS ZERO.
‘The Samuccaye is the same’ can refer to the two congruent triangles, and the zero to either

pair of parallel lines.

SUTRA 4: VERTICALLY AND CROSSWISE.
‘Crosswise’ can refer to the pairs of parallel lines, and ‘vertically’ to the oppositely placed
congruent triangles (B25 Corollary 1).
We can then say,
place two congruent triangles vertically opposite, and there are two pairg of

parallels crosswise.

However, the ‘crosswise’ can also be understood as referring to equal sides of the congruent
triangles needing to be arranged crosswise, to yield the parallelogram. With this interpretation
we can restate the theorem thus:

place congruent triangles (vertically) opposite on the same base, so that

there is a crosswise arrangement of equal sides and a parallelogram results.

B25 Corollaries (1) and (2)

Some of the sutras relevant to B25 Problem apply to these corollaries also.

B26 Theorem

The proof given refers to three theorems: B13, B8 and B25 Corollary (2), which see for dis-
cussion of the relevant sutras.

These are:

SUTRA 1: IF THE SAMUCCAYE IS THE SAME THERE IS A ZERO (converse form)
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SUTRA 2: THE ULTIMATE AND TWO PENULTIMATES.

SUTRA 3: TRANSPOSE AND APPLY.

PART C
Proposition C2, that area is a magnitude, is covered under the discussion on magnitude on
page 111. The Definition of area, and the rest of Part C, come under the sutra BY ADDITION
AND SUBTRACTION.

That other sutras also come in can be seen by considering the theorems referred to in the

proofs, and the sutras applying to them.

PART D
We owe our use of a circle to represent zero to the Arabs, who got it from the Hindus. Its
origin may predate writing, and it may be part of a symbolism in which ‘zero’ and ‘a circle’
symbolise each other: such symmetry is the sort of thing mathematicians generally appreciate.
Be that as it may, in what follows it will be assumed that zero symbolises a circle, as well as

retaining its ordinary meaning.

The sutra, IF THE SAMUCCAYE IS THE SAME THERE IS A ZERO, is represented in a
number of the following examples in its converse form:
IF THERE IS A ZERO (circle) THERE IS THAT WHICH IS THE SAME. [E.g. a given chord

of a circle subtends equal angles on the (same arc of the) circle]. Propositions it applies to
include: D2, D3, D4, D5, D8, D9 AND DI10.

The following study shows which other sutras come into play.

DI Theorem
SUTRA: BY COMPLETION OR NON-COMPLETION.
The complete figure establishes an inscribed rectangle; the incomplete figure relates a right

angle to the diameter (= a diagonal).
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D2 Theorem
SUTRA: BY COMPLETION OR NON-COMPLETION.
Observation establishes that opposite angles of a cyclic-quadrilateral total a half turn.

D3 Theorem

The proof shows two relevant sutras:

BY COMPLETION OR NON-COMPLETION applies via D2 Theorem;

BY ADDITION AND SUBTRACTION shows up in the first three steps of the proof.

D4 Theorem
Again, BY ADDITION AND SUBTRACTION can be seen at work in the proof. Additional
sutras are brought in by the theorems referred to in the proof.

D5 Theorem

SUTRA: chalanakalanabhyam, BY A LIMITING PROCESS.

Tirthaji does not give an English translation of this sutra. Its application here is
self-explanatory.

D6 Theorem
SUTRA: THE ULTIMATE AND TWICE THE PENULTIMATE.
This is also self-explanatory.

D7 Theorem
SUTRA: Anurupye Shunyamnyat, [F ONE IS IN RATIO THE OTHER ONE IS ZERO.
Here, (i) the phrase ‘in ratio’ is taken to refer to similar triangles;
(ii) working with the converse of the sutra, as a subsutra (see notes on B13 Theorem), we
have:
IF ONE IS ZERO, THE OTHER ONE IS IN RATIO;
(iii) zero is used to symbolize a circle.

The Theorem can accordingly be reformulated so as to reflect the subsutra:
if one part of the figure is a circle (zero) the other part is a pair of
similar triangles (in ratio).

D8 Theorem, D9 Theorem and D10 Theorem

SUTRA: IF ONE IS IN RATIO THE OTHER ONE IS ZERO.

Again, ‘in ratio’ refers to similar triangles, and the converse form (subsutra) is used, and zero
symbolises a circle. The ‘equal areas’ property follows, given similar triangles.
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The definition of magnitude and Propositions A11, B1 and C2

1. This definition deals with the whole and the part. The closest to this among the sutras is,
BY COMPLETION OR NON-COMPLETION.

Whatever is complete is whole and whatever is not is partial. Completion is the act of making

complete. But why by completion? It seems to refer to something in the act of happening,

which is a very alive quality. Is it telling us that we need to look at what it is that makes some-

thing whole?

One of the interesting things about a magnitude is that the complement needed to make a part
the same as the whole is itself a magnitude. The whole has been split into two parts, and both
are magnitudes. The definition only refers to one of them, apparently, but it could be either
part. That 1s, the definition applies equally to both parts. The part required BY COMPLE-
TION and the part currently in a state of NON-COMPLETION share a common quality, such

that they can be brought together to form a larger whole, which also has that quality.

2. Secondly, as already hinted at, the sutra BY ADDITION AND BY SUBTRACTION

applies. For, whether adding or subtracting, what we have remains a magnitude.

Provision 4 and the sutras

First, a few points to clear the way:

(1) One meaning of zero is absence of magnitude.

(i) Motion can be indicated by one or more magnitudes, such as velocity and acceleration.
When these are zero, there is rest.

(iii) Since zero can indicate the presence of rest, for the purposes of the sutras we can

take as one of its meanings that ZERO = REST.
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(iv) Furthermore, the principle that all motion is relative also has implications concerning the
state of rest, for it follows that there is rest within every moving system. This is a corollary of
the principle that motion is relative.

(v) These points can now be harnessed to restate Provision 4 in a form paralleled by one of

the suggested sub-sutras:

there being rest in every state of motion, there are things which remain constant (in this case

magnitudes) whatever the state of motion.

This can be expressed more tersely:

IF THERE IS A ZERO (REST) THE MAGNITUDE REMAINS THE SAME (WHATEVER
THE STATE OF MOTION).

Or as the suggested sub-sutra puts it:

IF THERE IS ZERO, THE SAMUCCAYE REMAINS THE SAME.

CONCLUSIONS

Flexible interpretation and application of the sutras makes it possible to apply them to all the
propositions given here. The hypothesis that the sutras apply to each and every part of
mathematics is supported by this study. They seem to be an attempt to sum up verbally
underlying patterns, themes and principles which keep cropping up. Words and phrases can
have different meanings, and this seems to apply especially to the sutras. Are these the

sound-bites of mathematics?

The three main conclusions are:
1. Alternative translations of the sutras are needed in some cases.
2. In a couple of cases there is a need for the converse of a sutra. This is assigned
the status of a subsutra coming under that sutra.

3. Zero symbolises a circle, as well as retaining its ordinary meaning.
At more length, the features of these conclusions are:

1. Tirthaji’s English translations of the sutras do not always convey their full

meanings, so that some alternatives are needed.
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Alternative translations proposed:

(1) Sutra: Shunyam samyasamuccaye. Tirthaji’s translation: if the samuccaye is the same that
samuccaye is zero.

Alternative translation: if the samuccaye is the same there is that which is zero.

(i) Sutra: sopantyadvayamantyam.

Tirthaji’s translation: the ultimate and twice the penultimate.

Alternative translation: the ultimate and double penultimate.

This last being ambiguous, one meaning is conveyed by Tirthaji’s translation and another by:

the ultimate and two penultimates.

2. In two cases it is assumed that the sutra also stands for its converse, these being
given here as subsutras.

The examples are:

(1) Sutra: if the samuccaye is the same there is that which is zero.

Subsutra (converse): if there is a zero there is that which is the same.

(i1) Sutra: if one is in ratio the other one is zero.

Subsutra (converse): if one is zero the other one is in ratio.

3. Zero, or ‘that which is zero’, can:

(1) symbolise a circle,

(11) indicate a point (which has zero magnitude),

(i11) indicate a direction from a point, since a second point suffices for this,
(iv) represent parallels, the angle between them being zero,

(v) denote the absence of a magnitude, and hence it can denote rest.

Other features are:
4. In the sutra, ‘the ultimate and twice the penultimate’, the ‘ultimate’, being some aim or

goal, may be freely chosen. What is considered to be ‘penultimate’ is in some way next to it.

5. It 1s assumed that the phrase ‘one is in ratio’ can be a reference to similar triangles, in the

sutra ‘if one is in ratio the other one is zero’, and its converse.

6. Examples have been given in which two theorems jointly come under one sutra.
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7. Tt is suggested that a sutra may refer to something which has not yet been proved.

8. Tirthaji does not give a translation for the sutra ‘chalanakalanabhyam’. The translation

suggested here is, ‘by a limiting process’.

However, on page 185 of Vedic Mathematics Tirthaji gives, ‘Chalana-Kalana — Differential

Calculus’. Ts this intended to be a translation?

SUBSUTRAS

As well as the sixteen sutras Tirthaji uses a number of subsutras. An example is ‘chakravat’,
cyclically. For example, the angles of a triangle or quadrilateral may conveniently be summed
in cyclical sequence. Not being essential to this study, subsutras have been omitted — a couple

of converses excepted.

According to Somanath Mahapatra, who was taught vedic mathematics by Tirthaji, ‘he used to
pluck them ((subsutras)) from the air’— the above being an example. The other examples he
was given are to be found in the book Vedic Mathematics, and also in his own book, Vedic
Ganit (written in the Oriian language). Mahapatra was also given a list of the sixteen sutras by
Tirthaji, confirming the list in Vedic Mathematics, which was compiled from stray

references in the text.

[The author met Somanath Mahapatra in Puri, India, in 1981].

OBSERVATIONS

(i) Sometimes a sutra shows up in the statement of a theorem, sometimes in the proof, and
sometimes sutras cover both — although not necessarily the same ones.

(i1) The sutra does not always reveal itself at first sight.

CONCLUDING REMARKS

Mathematicians are constantly looking for pattern. If the sixteen sutras really do refer to
themes or patterns running throughout the whole of mathematics, to have formulated them is

a fine achievement — and a valuable contribution.
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QUESTIONS, POSSIBLY ANSWERS
1. Tirthaji evidently had in mind that the sixteen sutras apply to his system. But to what extent
do they apply to mathematics not fitting an oral tradition? Might it be that the sutras still

apply, but are scattered more thinly?

2. What is meant by the suggestion that zero symbolises a circle?

If A can symbolise B, why cannot B symbolise A? There is no need to know what this means
in order to suggest it: the meaning is something which can be explored. As already remarked,
the need here is to take a fresh look at things to free up the thinking. It is conceivable that the
word ‘zero’, even if not the concept, might be used to symbolise a circle. It is conceivable that a
society or people might regard symbolism to be reversible, what is symbolised and the symbol
switching roles. In this connection note the following extract from what the New Shorter

Oxford Dictionary has to say about the word ‘symbol’:

a thing conventionally regarded as representing, typifying, or
recalling something else by possessing analogous qualities or

by association in fact or thought.
What analogous qualities do zero and a circle possess? Symmetry is one. For no figure is

more symmetrical than a circle — with the possible exception of a point — and can anything be

more symmetrical than zero, the absence of anything?
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ALTERNATIVE PROOFS & SEQUENCES IN PART D

Two alternative sequences are given, which between them cover Propositions D1 - D5, plus
one extra theorem, that a diameter is perpendicular to the tangent through an end point. These

sequences are used to present alternative proofs.

SEQUENCE 1

Theorem 1 A diameter subtends a right angle on the circumference of the circle.

In the figure, O being the centre of the circle,
triangles OAB and OBC are isosceles.

Therefore,

angle DOA = twice angle DBA  [B20 Theorem]
Likewise,

angle DOC = twice angle DBC  [B20 Theorem]
And AOC being a diameter, together these

make a half turn.
Therefore angle ABC = angle DBA + angle DBC

is half of this, i.e. a right angle, as required.

Theorem 2 A diameter to the circle is perpendicular to the tangent at its end point.

In the figure, AB being a diameter subtends

a right angle on the circumference. [Theorem 1] C D
Let the chord DB get shorter and shorter.

In the limit the points D and B coincide, so that BE 1s a

tangent, but it remains the case that angle ABE is a right

angle.This establishes the Theorem.
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Theorem 3 The angle between the tangent and the chord equals the angle subtended
by that chord on the far arc.

CASE I (Point O lies inside ABCD)
In the figure, AB is a tangent at B A B

and O is the centre of the circle. y
In ABDC, 20 + 2B + 2y = 1, turn. g
Therefore a + B + y = 1 right angle.
But angle ABO = 1 right angle. [Theorem 2] Y O
Therefore angle ABO = angle ABD + angle DBO D
=(a+pP)+7. C
That is, angle ABD =« +
= angle BCD,

demonstrating the Theorem in this case.

CASE 1II (Point O lies outside ABCD)
In ABCD, a +y + (y-B) + (- B) = 14 turn. | Y
Therefore a + v - B = 1 right angle. B
But angle ABO is a right angle, D&Y O
and a part of it, angle DBO = v. B
Therefore angle ABD = « - 3 = angle DCB,

demonstrating the Theorem in this case also. Cc

Theorem 4 Equal chords subtend equal angles on the same arc.

For by Theorem 3,
angle ABD = angle BC,D = angle BC,D.

This proves the Theorem.
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Theorem 5 Opposite angles of a cyclic-quadrilateral total a half turn.

In the figure, by Theorem 4,

angle DAC = angle DBC = «a (say)

and angle CDB = angle CAB = {3 (say), etc.
Therefore the angles in the cyclic-quadrilateral

total 2(ac + B + y + 9).

D
Note that each angle of the cyclic-quadrilateral ! ' B
C

contains two of these four letters, o, B, v and 9,

and that opposite angles contain all four of them.

Therefore angle A + angle C = a + B + v + 8 = angle B + angle D.
But angle A + angle C + angle B + angle D =1 turn.

Therefore angle A + angle C = ¥ turn,

demonstrating the Theorem.

SEQUENCE 2

Theorem 1 A diameter subtends a right angle on the circumference of the circle.

Use the proof in Theorem 1, Sequence 1 (or D1 Theorem)
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Theorem 2 Equal arcs subtend equal angles on the circumference.

CASE I (Point O lies inside AABC)
In AABC, 2o + 2 + 2y = 4 turn.
Therefore o + B + y = 1 right angle.
But angle DCB = 1 right angle.
And it is split into three angles, «, v and angle DCA, where
angle ACO = q,

and angle OCB = v. D

Therefore angle DCA = 3 = angle DBA.

That is, arc DA subtends « constant angle B on the circumfer-

ence, so long as Fig 1 applies.

CASE 1I (Point O lies outside AABC) & y «/ <
In AABC, o B
Y+B+(B-a)+(y-o)=1Y turn. B
Therefore y + B - o = 1 right angle. O = A
But angle DCB = 1 right angle [Theorem1]
and angle OCB = v. D

Therefore angle DCO =3 - a.
Therefore angle DCA = B = angle DBA.

That is, arc DA subtends a constant angle on the circumference, so long as Fig 2 applies.
By A2 Theorem, this applies to any identical construction using an equal arc AD.
Therefore the Theorem is established in both cases.

Theorem 3 The angle between the tangent and the chord equals the angle subtended
by that chord on the far arc.

The angles at C and D being the same [Theorem 2],
suppose that positions of D are taken

closer and closer to A.

In the limit, DA is replaced by the tangent TA,

and angle BDA becomes angle BAS.

That is, angle BAS = angle BCA, as the Theorem states.
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Theorem 4 An exterior angle of a cyclic-quadrilateral equals the interior opposite angle.
D

In cyclic-quadrilateral ABCD, by Theorem 3,
angle BAC = angle BDC = a (say),

angle CAD = angle CBD = B (say), etc.

In consequence the sum of the angles of the
cyclic-quadrilateral is

200+ 2B + 2y + 26 = 1 turn. [Prop. B21]

That is to say, these angles can neatly be

a+p F

arranged around a point — such as point A.

And at A we have a start, for angle BAD = o + 3. E

What is more, the vertically opposite angle must also equal o + {3, i.e. angle EAF = o + B.
That accounts for 2a + 23, and there are two remaining vertically opposite angles at A, which
between them need to account for the remaining 2y + 20.

i.e. angle BAE = angle DAF = v + .

These are both external angles of the cyclic-quadrilateral, and they are equal to the interior
opposite angle BCD (= vy + 9).

This establishes the Theorem.

Also good is Euclid’s sequence in the Elements, Book 111, Propositions 20, 21, 22.
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FURTHER DEFINITIONS
The following definitions are offered as a basis for further discussion.
1. Tangent

This definition is given in negative form: by excluding what it is not, what remains is what it
1S.

Definition If a straight line meets a line which is not straight, and if neither line is terminated
and they do not cross at that meeting point, and do not share a stretch of line, then the straight
line is said to be a tangenr to the other line at that point.

2. Extension to three dimensions

Definition All those points included when a plane rotates about a straight line on it are said to
belong to space.

Definition A collection of surfaces and/or lines and/or points is called a figure.

Definition And if the figure lies purely in a plane let it be called a figure in a plane or plane
figure.

Concerning figures in space

Definition If two points can be linked without crossing a figure they are said to lie on the

same side of that figure, and otherwise on different sides.
Definition If a finite figure has just one side then it is said to be open.
Definition If a finite figure has two or more sides then it is said to be closed.

Definition A point is said to lie outside a closed figure if it can be linked to a straight line
without either line intersecting that figure.

Definition If a straight line not in a given plane but standing on a point which is, makes the
same angle with all straight lines within the plane and which stand on that point, then it is said
to be normal to that plane, and the plane is said to be normal to that line.
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Definition That whose elements are surfaces, lines and points, and which at each point

embodies a complete turn normal to all directions in space, is called a solid.

The case is similar to that of a surface. A boundary to a solid does not satisfy the above defini-

tion of a solid, and the solid may contain holes or slits.

Note that, as defined, a solid need not be of finite extent. But, if it is, and if it contains a single

hole running right through, then its shape is essentially that of a torus, or doughnut.

The following notation is intended to be of use where there is a need to distinguish between
an acute and an obtuse angle.

As an example, suppose we are given a cyclic-quadrilateral ABCD, O being the centre of the
circumscribing circle. The two angles AOC can be distinguished by the notation: angle
BAOCB for the one and angle DAOCD for the other. Of course, if an angle is known to be

acute, three letters suffice for it.



